Effects of Pulse Voltage on the Droplet Formation of Alcohol and Ethylene Glycol in a Piezoelectric Inkjet Printing Process with Bipolar Pulse

この論文にアクセスする

この論文をさがす

著者

抄録

The dynamics of droplet formation of liquid in a piezoelectric inkjet printing process with bipolar pulse and drop-on-demand (DOD) mode is investigated in this study. Two liquids with different viscosities and surface tension coefficients; alcohol and ethylene glycol, are studied. The effects of pulse voltage on the droplet formation are also examined. A piezoelectric actuated inkjet printhead with a nozzle orifice of 30 μm in diameter is employed to conduct the investigations at room temperature (25°C). The complex morphologies of the droplets during their formation, which include ejection and stretching of liquid, contraction of liquid column, pinch-off of liquid column from nozzle exit, breakup of liquid column into primary droplet and possible satellites, and combination of primary drop and satellites, are demonstrated. The droplet size is in the range of 23–37 μm. The investigations also show a workable pulse voltage range; between 28 and 40 volts, exists for the droplets to be smoothly generated and ejected for alcohol where viscosity and surface tension coefficient are smaller. The range is between 30 and 50 volts for ethylene glycol. Within this workable voltage range, one single droplet for each pulse can be achieved with lower voltage. For the intermediate voltage, two droplets are generated initially and collide into one during the flying stage. For the higher voltage, multiple droplets are formed without recombination. It is also found that the velocities of the main droplet and satellite droplet in the different voltage ranges are responsible for whether the multiple initial droplets can be recombined.

収録刊行物

  • Materials transactions  

    Materials transactions 49(2), 331-338, 2008-02-01 

    The Japan Institute of Metals and Materials

参考文献:  10件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10021144256
  • NII書誌ID(NCID)
    AA1151294X
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    13459678
  • NDL 記事登録ID
    9354561
  • NDL 雑誌分類
    ZP41(科学技術--金属工学・鉱山工学)
  • NDL 請求記号
    Z53-J286
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ