Analysis of Uniaxial Alignment Behavior of Nonmagnetic Materials under Static Magnetic Field with Sample Rotation

この論文にアクセスする

この論文をさがす

著者

抄録

A high magnetic field is a useful tool to control the crystal alignment of nonmagnetic materials such as metals, ceramics and polymers. However, the uniaxial alignment of hexagonal crystals with a magnetic susceptibility of χ<I><SUB>c</SUB></I><χ<I><SUB>a</SUB></I> cannot be achieved under a static magnetic field, because the c-axis could lie along any arbitrary direction in the plane perpendicular to the direction of the magnetic field. For the uniaxial alignment of these materials, the imposition of a rotating magnetic field during a slip casting process has been proposed.<BR>In this study, both theoretical analysis and model experiment have been conducted for the elucidation of the crystal alignment phenomena under a rotating magnetic field and for the quantitative clarification of the optimum operating parameters such as magnetic field strength and viscosity of the medium surrounding the crystals. It has been found that the alignment time decreased with the magnetic field strength and/or with an increase in the viscosity of the surrounding medium. This relation is in contrary to the case of the crystal alignment under the static magnetic field. The result of the model experiment agrees well with that obtained by the theoretical analysis.

収録刊行物

  • Materials transactions  

    Materials transactions 49(4), 787-791, 2008-04-01 

    The Japan Institute of Metals and Materials

参考文献:  20件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10021145822
  • NII書誌ID(NCID)
    AA1151294X
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    13459678
  • NDL 記事登録ID
    9447410
  • NDL 雑誌分類
    ZP41(科学技術--金属工学・鉱山工学)
  • NDL 請求記号
    Z53-J286
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ