給液方法の改善による狭あい流路内強制流動沸騰における大伝熱面の冷却 Cooling of Large Area for Flow Boiling in Narrow Channels by Improved Liquid Supply

この論文にアクセスする

この論文をさがす

著者

抄録

Heat generation density from semiconductor devices increases with the rapid development of electronic technology. The cooling system using boiling two-phase phenomena attracts much attention because of its high heat removal potential. Experiments on the increase of CHF for flow boiling in narrow channels by improved liquid supply were conducted for the development of high-performance space cold plates. A large surface of 150mm in heated length and 30mm in width with grooves of an apex angle of 90 deg, 0.5mm in depth and 1mm in pitch was employed. A structure of narrow heated channel between parallel plates with an unheated auxiliary channel was devised and tested by using water for different combinations of gap sizes and volumetric flow rates, where inlet of the main heated channel and the outlet of auxiliary unheated channel were closed in order to prevent the flow instability observed frequently at low flow rate for parallel two channels. The data were compared with those for the two parallel channels. CHF values of 2×10<SUP>6</SUP>W/m<SUP>2</SUP> were obtained for the improved configuration. For gap sizes of 2mm and 5mm at high volumetric flow rate larger than 3.60<I>l</I>/min, the extension of dry-patches were observed at the upstream location of the main heated channel resulting burnout not at the downstream but at the upstream. The values of pressure drop for gap size of 2mm were higher than that for gap size of 5mm. When the performance of cooling system was evaluated by the pump power ignoring its variation of efficiency with volumetric flow rate, i.e., the power defined as the product of the pressure drop and the total volumetric flow rate, higher values of CHF were obtained for gap size of 5mm as far as the same pump power was concerned.

収録刊行物

  • 混相流研究の進展 : 年会講演会論文精選集 = Progress in multiphase flow research  

    混相流研究の進展 : 年会講演会論文精選集 = Progress in multiphase flow research (2008), 75-82, 2008-06-15 

    THE JAPANESE SOCIETY FOR MULTIPHASE FLOW

参考文献:  11件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10021154378
  • NII書誌ID(NCID)
    AA12204080
  • 本文言語コード
    JPN
  • 資料種別
    ART
  • ISSN
    18815804
  • NDL 記事登録ID
    9553848
  • NDL 雑誌分類
    ZM17(科学技術--科学技術一般--力学・応用力学)
  • NDL 請求記号
    Z74-E929
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ