微生物固定化のための膜の改質と水処理分野への適用 Surface Modification for Bacterial Immobilization by Radiation-Induced Graft Polymerization and Application to Biological Wastewater Treatment

この論文にアクセスする

この論文をさがす

著者

    • 常田 聡 TSUNEDA Satoshi
    • 早稲田大学 先進理工学部 生命医科学科 Department of Life Science and Medical Bioscience, Waseda University
    • 寺田 昭彦 TERADA Akihiko
    • 早稲田大学 先進理工学部 生命医科学科 Department of Life Science and Medical Bioscience, Waseda University

抄録

Most biofilms have redox stratification where aerobic and anaerobic zones are stratified. This inherent property can be potentially applied to removals of persistent organic pollutants and simultaneous carbon and nitrogen. Biofilm reactors, therefore, have been numerously developed; however, their downsides are long-term startup and difficulty to maintain stable reactor performance since the reactor might experience sloughing events. The engineering challenges are to reduce startup time and to create rigid biofilm resistant to such sloughing events. Given that initial bacterial adhesion is an important factor to govern biofilm cohesiveness, enhancement of initial bacterial adhesion to a substratum is required. Here, we applied radiation-induced graft polymerization (RIGP) in terms of modification of a substratum to enhance bacterial adhesion and finally to develop a novel biofilm reactor system. Polyethylene sheets and hollow-fibers were modified with either amino or sulfonic acid groups. RIGP provides precise degree of grafting and density of the functional groups. Bacterial adhesion test on surface-modified membrane has revealed that membrane potential, i.e., electrostatic interaction, mainly governs bacterial adhesion rate, indicating that positivelycharged surfaces are favorable for initial bacterial adhesion. On the contrary, these surfaces potentially decrease bacterial activity, which is probably dependent on cell wall structures of Gram-positive and -negative bacteria. Even though bacteria attaching to the surfaces decrease the activity, flow cell test has demonstrated that these surfaces enhanced and maintained E. coli biofilm growth whereas the biofilm on negatively-charged surfaces did not grow well, paving the way for the effectiveness of the positively charged surfaces for bacterial immobilization carriers. Membrane-aerated biofilm reactors with positively-charged surface have been developed for controllable nitritation (conversion from ammonium to nitrite) and for simultaneous nitrification and denitrification, which achieved high oxygen utilization efficiency and high nitrogen removal rates. Therefore, we conclude that surface-modification by RIGP provides a suitable surface where rigid biofilm grows rapidly, leading to development of the novel biofilm reactor system for wastewater treatment.

収録刊行物

  •  

    膜 33(2), 54-62, 2008-03-01 

    THE MEMBRANE SOCIETY OF JAPAN

参考文献:  36件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10021167276
  • NII書誌ID(NCID)
    AN0023215X
  • 本文言語コード
    JPN
  • 資料種別
    REV
  • ISSN
    03851036
  • NDL 記事登録ID
    9437507
  • NDL 雑誌分類
    ZR2(科学技術--生物学--生化学)
  • NDL 請求記号
    Z18-1127
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ