適応的サンプリングによる階層モデル化された対象の効率的状態推定 An Efficient Adaptive Sampling Algorithm for Particle Filtering of the Hierarchically-Modeled Object

この論文にアクセスする

この論文をさがす

著者

    • 坂東 誉司 BANDO Takashi
    • 奈良先端科学技術大学院大学 情報科学研究科 Graduate School of Information Science, Nara Institute of Science and Technology
    • 柴田 智広 SHIBATA Tomohiro
    • 奈良先端科学技術大学院大学 情報科学研究科 Graduate School of Information Science, Nara Institute of Science and Technology
    • 石井 信 ISHII Shin
    • 奈良先端科学技術大学院大学 情報科学研究科 Graduate School of Information Science, Nara Institute of Science and Technology

抄録

This paper presents a novel method for estimation of high-dimensional state variables by means of particle filtering (PF). One of the major drawbacks of PF is that a large number of particles is generally required for accurate estimation of state variables lying in a high-dimensional space, whose maintenance is time-consuming. In many applications, the high-dimensional state variables can be divided into two groups according to the hierarchy that an object model possesses; one group (higher layer) is easily integrated out analytically from the posterior densities, and we have only to carry out PF for the other group (lower layer) whose state space is reduced from the whole state space. In this paper, we propose a novel proposal distribution in the lower layer, which is a mixture of approximate prediction densities computed in the higher and lower layers. An adaptive determination of the mixture ratio, which implements a mutual interaction between the layers as a mixture state transition model in PF, is realized by means of on-line EM algorithm for adapting to complicated real environments. The effectiveness of the proposed method is demonstrated by computer simulations of head pose estimation of a car driver.

収録刊行物

  • システム制御情報学会論文誌  

    システム制御情報学会論文誌 19(10), 369-377, 2006-10-15 

    一般社団法人 システム制御情報学会

参考文献:  17件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10021999928
  • NII書誌ID(NCID)
    AN1013280X
  • 本文言語コード
    JPN
  • 資料種別
    ART
  • ISSN
    13425668
  • NDL 記事登録ID
    8086659
  • NDL 雑誌分類
    ZM11(科学技術--科学技術一般--制御工学)
  • NDL 請求記号
    Z14-195
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ