Relationship between Microstructures and Tensile Properties of an Fe-30Mn-8.5Al-2.0C Alloy

  • Lin Chih Lung
    Department of Materials Science and Engineering, National Chiao Tung University
  • Chao Chuen Guang
    Department of Materials Science and Engineering, National Chiao Tung University
  • Bor Hui Yum
    Materials & Electro-Optics Research Division, Chung-Shan Institute of Science & Technology
  • Liu Tzeng Feng
    Department of Materials Science and Engineering, National Chiao Tung University

この論文をさがす

抄録

Owing to the presence of a large amount of fine (Fe,Mn)3AlC carbides within austenite (γ) matrix, the tensile property of the Fe-30%Mn-8.5Al%-2.0%C (in mass%) alloy in the as-quenched condition was clearly superior to that of the as-quenched FeMnAlC (C≤1.3%) alloys investigated by previous workers. After being aged at 823 K for 3 h, the present alloy could possess high yield strength up to 1262 MPa with an excellent 32.5% elongation. With almost equivalent ductility, the yield strength obtained was about 16% higher than that of the FeMnAlC (C≤1.3%) alloys after solution heat-treatment or controlled-rolling followed by an optimal aging at 823 K. Additionally, due to the pre-existing fine (Fe,Mn)3AlC carbides within the γ matrix in the as-quenched alloy, the aging time required for attaining the optimal combination of strength and ductility was much less than that of the FeMnAlC (C≤1.3%) alloys aged at 823 K. When the present alloy was aged at 823 K for a time period longer than 4 h, both the strength and ductility were drastically dropped due to the occurrence of γo⁄κ (γo: carbon-deficient austenite) lamellar structure on the γ⁄γ grain boundaries.

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (45)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ