Roughly Sorting: Sequential and Parallel Approach

この論文にアクセスする

  • CiNii 論文PDF

    オープンアクセス

この論文をさがす


抄録

We study sequential and parallel algorithms on roughly sorted sequences. A sequence a = (a_l, a_2, . . . , a_n) is k-sorted if for all 1<≤i,j<≤n,i<j-k implies a_i<≤a_j. We first show a real-time algorithm for determining if a given sequence is k-sorted and an O(n)-time algorithm for finding the smallest k for a given sequence to be k-sorted. Next, we give two sequential algorithms that merge two k-sorted sequences to form a k-sorted sequence and completely sort a k-sorted sequence. Their running times are O(n) and O(n log k), respectively. Finally, parallel versions of the complete-sorting algorithm are presented. Their parallel running times are O(f(2k) 1og k), where f(t) is the computing time of an algorithm used for finding the median among t elements.

収録刊行物

Journal of information processing   [巻号一覧]

Journal of information processing 12(2), 154-158, 1989-08-30  [この号の目次]

一般社団法人情報処理学会

各種コード

  • NII論文ID(NAID) :
    110002673489
  • NII書誌ID(NCID) :
    AA00700121
  • 本文言語コード :
    ENG
  • ISSN :
    03876101
  • 収録DB :
    NII-ELS