Recursive Estimation Technique of Signal from Output Measurement Data in Linear Discrete-Time Systems

この論文をさがす

抄録

The recursive least-squares filter and fixed-point smoother are designed in linear discrete-time systems. The estimators require the information of the system matrix, the observation vector and the variances of the state and white Gaussian observation noise in the signal generating model. By appropriate choices of the observation vector and the state variables, the state-space model corresponding to the ARMA (autoregressive moving average) model of order (n, m) is introduced. Here, some elements of the system matrix consist of the AR parameters. This paper proposes modified iterative technique to the existing one [1] regarding the estimation of the variance of observation noise based on the estimation methods of ARMA parameters in Refs. [2], [3]. As a result, the system matrix, the ARMA parameters and the variances of the state and observation noise are estimated from the observed value and its sampled autocovariance data of finite number. The input noise variance of the ARMA model is estimated by use of the autocovariance data and the estimates of the AR parameters and one MA parameter.

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (11)*注記

もっと見る

詳細情報 詳細情報について

  • CRID
    1573950402123602176
  • NII論文ID
    110003207518
  • NII書誌ID
    AA10826239
  • ISSN
    09168508
  • 本文言語コード
    en
  • データソース種別
    • CiNii Articles

問題の指摘

ページトップへ