A Full-scale Experiment on Microbubbles for Skin Friction Reduction Using "SEIUN MARU"

Bibliographic Information

Other Title
  • 青雲丸を用いたマイクロバブルの摩擦抵抗低減実船実験
  • セイウンマル オ モチイタ マイクロバブル ノ マサツ テイコウ テイゲン ジッセン ジッケン コウヘン ジッセン ジッケン
  • 青雲丸を用いたマイクロバブルの摩擦抵抗低減実船実験 : 後編:実船実験
  • Part 2: The Full-scale Experiment
  • 後編: 実船実験

Search this article

Abstract

This paper is the second half of the report on the study on microbubbles carried out by the SR239 project of the Shipbuilding Research Association of Japan, and describes the full-scale experiment using “SEIUN MARU”, a 116m-long training ship that belongs to the Institute for Sea Training. Using numerical analysis and the experimental data obtained in the preparatory study described in the first half of the report, the net energy saving of SEIUN MARU by microbubbles at 14kts was estimated to be 2%. In the full-scale experiment, the trajectory of the generated bubbles was observed using underwater TV cameras and was found to shift more upward than predicted. The local skin friction was measured at several locations on the hull surface, and the skin friction increase as well as decrease by the bubbles was measured. The local void ratio was measured at one point on the hull surface, and the bubbles were found to travel slightly away from the hull surface. The change of the ship speed and shaft horsepower by microbubbles was measured, and the decrease or increase of engine power at constant ship speed was analyzed. In the most cases of the experiment the ship speed decreased by the bubble injection, mainly due to the increase of ship resistance and the decrease of propeller efficiency caused by the bubbles going into the working propeller. But, by carefully choosing the bubble injection location and thus avoiding the bubble entrainment into the propeller, the 3% power saving at a constant speed of 14kts was obtained. By taking into account the power needed to inject bubbles against hydrostatic pressure due to water depth at the injection point, this corresponds to the net power saving of 2%. Thus the net power saving by microbubbles was measured on a full- scale ship for the first time in the world.

Journal

Citations (12)*help

See more

References(11)*help

See more

Details 詳細情報について

Report a problem

Back to top