Experimental petrology of ancient lunar mare basalt Asuka-881757: Spinel crystallization as a petrologic indicator

Access this Article

Search this Article

Author(s)

    • Arai Tomoko
    • Antarctic Meteorite Research Center, National Institute of Polar Research
    • Takeda Hiroshi
    • Department of Earth and Planetary Science, The University of Tokyo

Abstract

The paucity of titanian chromites in lunar-meteorite basalt Asuka (A)-881757 is unusual compared to the general occurrence of co-existing chromites and ulvospinels in the Apollo and Luna mare basalts. The unique spinel crystallization of A-881757 is expected to hold a key to elucidate the crystallization and cooling episodes of the basalt. In this study, we investigated the possible reason for the missing chromite by conducting isothermal and cooling experiments on the bulk-rock composition of A-881757 and discuss the petrogenesis of the ancient low-Ti mare basalt in light of spinel crystallization. A series of isothermal experiments showed the A-881757 basalt magma is not saturated with chromite under the expected lunar oxygen fugacity condition (IW~IW-1). A peritectic reaction among chromite, melt, and pyroxene is present for A-881757 basalt magma under the more oxidized condition which is one or two log unit higher than the lunar condition. The cooling experiment successfully reproduced the chromian ulvospinels with similar compositions to those in A-881757. The result of the cooling experiments further implies that ulvospinels solely crystallized from highly-fractionated interstitial melts in the late crystallization stage. The disparity in the crystallization of the liquidus chromite between the low-Ti and very low-Ti basalts might reflect the difference of bulk Cr_2O_3 concentration. The low liquidus temperature and the paucity of the liquidus olivine in A-881757 infer that the A-881757 basalt represents a liquid derived from near-surface fractionation processes. Chromites might possibly have been present during that near-surface fractionation episode prior to the eruption of the magma.

The paucity of titanian chromites in lunar-meteorite basalt Asuka (A)-881757 is unusual compared to the general occurrence of co-existing chromites and ulvospinels in the Apollo and Luna mare basalts. The unique spinel crystallization of A-881757 is expected to hold a key to elucidate the crystallization and cooling episodes of the basalt. In this study, we investigated the possible reason for the missing chromite by conducting isothermal and cooling experiments on the bulk-rock composition of A-881757 and discuss the petrogenesis of the ancient low-Ti mare basalt in light of spinel crystallization. A series of isothermal experiments showed the A-881757 basalt magma is not saturated with chromite under the expected lunar oxygen fugacity condition (IW〜IW-1). A peritectic reaction among chromite, melt, and pyroxene is present for A-881757 basalt magma under the more oxidized condition which is one or two log unit higher than the lunar condition. The cooling experiment successfully reproduced the chromian ulvospinels with similar compositions to those in A-881757. The result of the cooling experiments further implies that ulvospinels solely crystallized from highly-fractionated interstitial melts in the late crystallization stage. The disparity in the crystallization of the liquidus chromite between the low-Ti and very low-Ti basalts might reflect the difference of bulk Cr_2O_3 concentration. The low liquidus temperature and the paucity of the liquidus olivine in A-881757 infer that the A-881757 basalt represents a liquid derived from near-surface fractionation processes. Chromites might possibly have been present during that near-surface fractionation episode prior to the eruption of the magma.

Journal

  • Antarctic meteorite research

    Antarctic meteorite research 19, 1-19, 2006-10

    National Institute of Polar Research

Codes

  • NII Article ID (NAID)
    110004808735
  • NII NACSIS-CAT ID (NCID)
    AA11182426
  • Text Lang
    ENG
  • Article Type
    Departmental Bulletin Paper
  • ISSN
    13434284
  • Data Source
    NII-ELS  IR 
Page Top