リズム現象の数理 : 縮約理論によるアプローチ(第52回物性若手夏の学校(2007年度),講義ノート)

この論文にアクセスする

この論文をさがす

抄録

非平衡散逸系が自発的に生み出すリズムは,軌道の漸近安定性をもつリミットサイクル振動子によって記述される.単一のリミットサイクル振動子はそれ自身すでに解析的記述が一般に不可能な非線形システムである.したがって,リミットサイクル振動子の集団やネットワークの挙動を明らかにすることは途方もなく困難な数学的問題と考えられ,ごく近年までその研究はほとんどお手あげの状態だった.しかし,縮約理論を突破口として長い不毛の時代は終り,今や活気に満ちた新しい時代に入っている.他方,生命科学の飛躍的進歩とともに次々に明らかにされる新事実によって,生命過程におけるリズム間の同期・非同期という現象の重要性はますます疑いようのないものとなってきた.そして,文字どおりの生き物のみならず,あたかも生けるがごとく躍動する多くの自然現象においても,リズムと同期の機構がその根底にあることが広く認められつつある.この講義では,リズム現象の理論的基礎である二大縮約法,すなわち中心多様体縮約法と位相縮約法についてまず概観する.次いで2振動子間の結合様式の基本タイプについて述べ,振動子集合体のダイナミクスの考察へと進む.結合距離の変化によって振動場はさまざまな様相を見せ,またランダムネスの導入は思いがけない効果をもたらす.このように,振動子集団の挙動は状況に応じてきわめて多彩である.講義ではさまざまな具体例を織り交ぜながら,結合振動子系の多彩な挙動を理解する上で縮約理論がどのように有効に用いられるかを平易に述べたい.ただし,本稿ではページ数の制約もあって応用例については多くを割愛せざるをえず,理論の大筋を述べることにとどめた.

収録刊行物

  • 物性研究

    物性研究 89(6), 810-840, 2008-03-20

    物性研究刊行会

各種コード

  • NII論文ID(NAID)
    110006633340
  • NII書誌ID(NCID)
    AN0021948X
  • 本文言語コード
    JPN
  • 資料種別
    Journal Article
  • ISSN
    05252997
  • NDL 記事登録ID
    9434349
  • NDL 雑誌分類
    ZM35(科学技術--物理学)
  • NDL 請求記号
    Z15-4
  • データ提供元
    NDL  NII-ELS  IR 
ページトップへ