112(P-40) cdc25A阻害剤dysidiolideの全合成と構造活性相関(ポスター発表の部)

DOI

書誌事項

タイトル別名
  • 112(P-40) Total Synthesis and Structure-Activity Relationship of cdc25A Inhibitor Dysidiolide

抄録

Dysidiolide (1), a novel sesterterpene from the Caribbean marine sponge Dysidea etheria de Laubenfels, inhibits the protein phophatase cdc25A (IC_<50>=9.4μM) that promotes the Gl/S transition of the cell cycle by dephosphorylation of the cyclin/CDK complex. Cdc25A is known to be oncogenic and overexpressed in a number of tumor cell lines. Therefore, cdc25A inhibitor dysidiolide is regarded as a novel candidate agent for the treatment of cancer and other proliferative diseases. Although some groups accomplished total synthesis of dysidiolide, a synthetic approach to its struture-activity relationship has not been reported yet. We developed an efficient synthetic route to dysidiolide and its analogs in order to investigate the structure-activity relationship. The retrosynthetic analysis is shown in scheme 1. The octalin framework was constructed by intermolecular Diels-Alder reaction of the chiral triene (5) with crotonaldehyde (scheme 3). Subsequently, the quaternary center at C6 was created by methylation of the exocyclic enolate (scheme 4). Finally, the γ-hydroxybutenolide residue was introduced by addition of 3-furyllithium to the aldehyde (2) and successive photochemical oxidation of the furan ring. A series of dysidiolide analogs were synthesized according to the same procedures. To investigate the structure-activity relationship of dysidiolide, dysidiolide and its analogs were examined for cdc25A/B inhibitory activity and antiproliferative activity (table1). Searching for simple and strong cdc25A inhibitors, we designed and synthesized novel cdc25A inhibitors using Windaus-Grundmann ketone derived from Vitamin D3 (figure 1, table 2). Finally, to comfirm the effect of cdc25A inhibitors on cell cycle progression, cell cycle analysis was performed (figure 2).

収録刊行物

詳細情報 詳細情報について

  • CRID
    1390282681055145088
  • NII論文ID
    110006682014
  • DOI
    10.24496/tennenyuki.42.0_667
  • ISSN
    24331856
  • 本文言語コード
    ja
  • データソース種別
    • JaLC
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用不可

問題の指摘

ページトップへ