フォークソノミーを用いた講義選択知識の抽出(オフィスインフォメーションシステム,グループウエア及び一般)  [in Japanese] Folksonomic extraction of knowledge for course selection  [in Japanese]

Search this Article

Author(s)

Abstract

大学における履修講義の選択は,シラバスによって提供される講義内容や必修・選択の区分,開講時期に加えて,学生間の口コミなどによる情報に基づいて決定するのが一般的である.本稿では,学生によるボトムアップな情報を統合することによって,学生間における講義選択知識の抽出をおこなう.具体的には,学生自身が付与する「講義を抽象するソーシャルタグ」と「関連の深い講義間のソーシャルリンク」を用いて講義に関するフォークソノミーを割出し,ソーシャルリンクとソーシャルタグの共起によるネットワークを生成した.これを用いてPageRankによる中心的な講義の抽出とSDC法によるクラスターの抽出をおこない,講義選択知識から学生の観点からなされる分類と履修が推奨される講義の抽出をおこなった.

University students generally rely on the information through word of mouth among themselves, course descriptions, and other administrative information (i. e., distinction between required and optional credits) in course selection. The present article proposes a decision support system for course selection which makes an integrated use of the information emerged from word of mouth among students. In particular, we firstly built folksonomy about courses with social tags that briefly summarize the courses and social links that associate potentially interrelated courses. Secondly, we created networks of courses with the social links and the co-occurrence social tags. We, then, extracted the central courses by using PageRank and the clusters of courses by SD-cluster analysis. The users of our pilot decision support system indicated that the information on course-network has been useful in their course selections.

Journal

  • IEICE technical report. Office Information Systems   [List of Volumes]

    IEICE technical report. Office Information Systems 108(53), 79-84, 2008-05-16  [Table of Contents]

    The Institute of Electronics, Information and Communication Engineers

References:  6

You must have a user ID to see the references.If you already have a user ID, please click "Login" to access the info.New users can click "Sign Up" to register for an user ID.

Cited by:  1

You must have a user ID to see the cited references.If you already have a user ID, please click "Login" to access the info.New users can click "Sign Up" to register for an user ID.

Codes

  • NII Article ID (NAID)
    110006861941
  • NII NACSIS-CAT ID (NCID)
    AA11651720
  • Text Lang
    JPN
  • Article Type
    Journal Article
  • ISSN
    09135685
  • NDL Article ID
    9529204
  • NDL Source Classification
    ZN33(科学技術--電気工学・電気機械工業--電子工学・電気通信)
  • NDL Call No.
    Z16-940
  • Data Source
    CJP  CJPref  NDL  NII-ELS 
Page Top