Perturbations and Stability of Static Black Holes in Higher Dimensions(Chapter 6,Higher Dimensional Black Holes) :

この論文をさがす

著者

抄録

In this chapter we consider perturbations and stability of higher dimensional black holes focusing on the static background case. We first review a gauge-invariant formalism for linear perturbations in a fairly generic class of (m+n)-dimensional spacetimes with a warped prodnct metric, including black hole geometry. We classify perturbations of such a background into three types, the tensor, vector and scalar-type, according to their tensorial behavior on the n-dimensional part of the background spacetime, and for each type of perturbations, we introduce a set of manifestly gauge invariant variables. We then introduce harmonic tensors and write down the equations of motion for the expansion coefficients of the gauge invariant perturbation variables in terms of the harmonics. In particular, for the tensor-type perturbations a single master equation is obtained in the (m+n)-dimensional background, which is applicable for perturbation analysis of not only static black holes but also some class of rotating black holes as well as black-branes. For the vector and scalar type, we derive a set of decoupled master equations when the background is a (2+n)-dimensional static black hole in the Einstein-Maxwell theory with a cosmological constant. As an application of the master equations. we review the stability analysis of higher dimensional charged static black holes with a cosmological constant. We also briefly review the recent results of a generalization of the perturbation formulae presented here and stability analysis to static black holes in generic Lovelock theory.

In this chapter we consider perturbations and stability of higher dimensional black holes focusing on the static background case. We first review a gauge-invariant formalism for linear perturbations in a fairly generic class of (m+n)-dimensional spacetimes with a warped prodnct metric, including black hole geometry. We classify perturbations of such a background into three types, the tensor, vector and scalar-type, according to their tensorial behavior on the n-dimensional part of the background spacetime, and for each type of perturbations, we introduce a set of manifestly gauge invariant variables. We then introduce harmonic tensors and write down the equations of motion for the expansion coefficients of the gauge invariant perturbation variables in terms of the harmonics. In particular, for the tensor-type perturbations a single master equation is obtained in the (m+n)-dimensional background, which is applicable for perturbation analysis of not only static black holes but also some class of rotating black holes as well as black-branes. For the vector and scalar type, we derive a set of decoupled master equations when the background is a (2+n)-dimensional static black hole in the Einstein-Maxwell theory with a cosmological constant. As an application of the master equations. we review the stability analysis of higher dimensional charged static black holes with a cosmological constant. We also briefly review the recent results of a generalization of the perturbation formulae presented here and stability analysis to static black holes in generic Lovelock theory.

収録刊行物

  • Progress of theoretical physics. Supplement

    Progress of theoretical physics. Supplement (189), 165-209, 2011

    Publication Office, Progress of Theoretical Physics

参考文献:  60件中 1-60件 を表示

  • <no title>

    BERTI E.

    Class. Quant. Grav. 26, 163001, 2009

    被引用文献1件

  • <no title>

    KODAMA H.

    Prog. Theor. Phys. 110, 701, 2003

    被引用文献1件

  • <no title>

    KODAMA H.

    Prog. Theor. Phys. 111, 29, 2004

    被引用文献1件

  • <no title>

    ISHIBASHI A.

    Prog. Theor. Phys. 110, 901, 2003

    被引用文献1件

  • <no title>

    REGGE T.

    Phys. Rev. 108, 1063, 1957

    被引用文献1件

  • <no title>

    ZERILLI F.

    Phys. Rev. D 9, 860, 1974

    被引用文献1件

  • <no title>

    TEUKOLSKY S. A.

    Phys. Rev. Lett. 29, 1114, 1972

    被引用文献1件

  • <no title>

    KUNDURI H. K.

    Phys. Rev. D 74, 084021, 2006

    被引用文献1件

  • <no title>

    MURATA K.

    Class. Quant. Grav. 25, 035006, 2008

    被引用文献1件

  • <no title>

    MURATA K.

    Prog. Theor. Phys. 120, 561, 2008

    被引用文献1件

  • <no title>

    DURKEE M.

    Class. Quant. Grav. 28, 035011, 2011

    被引用文献1件

  • <no title>

    TAKAHASHI T.

    Prog. Theor. Phys. 124, 911, 2010

    被引用文献1件

  • <no title>

    WALD R. M.

    General Relativity, 1984

    被引用文献1件

  • <no title>

    BIRMINGHAM D.

    Class. Quart. Grav. 16, 1197, 1999

    被引用文献1件

  • <no title>

    NARIAI H.

    Sci. Rep. Tohoku Univ., Ser. 1 34, 160, 1950

    被引用文献1件

  • <no title>

    NARIAI H.

    Sci. Rep. Tohoku Univ., Ser. 1 35, 62, 1961

    被引用文献1件

  • <no title>

    CARDOSO V.

    Phys. Rev. D 70, 024002, 2004

    被引用文献1件

  • <no title>

    KODAMA H.

    Prog. Theor. Phys. Suppl. 78, 1, 1984

    被引用文献1件

  • <no title>

    ISHIBASHI A.

    Class. Quant. Grav. 21, 2981, 2004

    被引用文献1件

  • <no title>

    CRAIOVEANU M.

    Old and New Aspects in Spectral Geometry, 2001

    被引用文献1件

  • <no title>

    AKHIEZER N. I.

    Theory of Linear Operators in Hilbert Space, 1966

    被引用文献1件

  • <no title>

    MYERS S.

    Duke Math. J. 8, 401, 1941

    被引用文献1件

  • <no title>

    KANTI P.

    Phys. Rev. D 80, 084016, 2010

    被引用文献1件

  • <no title>

    KODAMA H.

    Phys. Rev. D 79, 044003, 2009

    被引用文献1件

  • <no title>

    CHANDRASEKHAR S.

    The Mathematical Theory of Black Holes, 1983

    被引用文献1件

  • <no title>

    LOVELOCK D.

    J. Math. Phys. 12, 498, 1971

    被引用文献1件

  • <no title>

    ZWIEBACH B.

    Phys. Lett. B 156, 315, 1985

    被引用文献1件

  • <no title>

    TAKAHASHI T.

    Phys. Rev. D 79, 104025, 2009

    被引用文献1件

  • <no title>

    ZUMINO B.

    Phys. Rep. 137, 109, 1986

    被引用文献1件

  • <no title>

    ZEGERS R.

    J. Math. Phys. 46, 072502, 2005

    被引用文献1件

  • <no title>

    WILTSHIRE D.

    Phys. Lett. B 169, 36, 1986

    被引用文献1件

  • <no title>

    WHEELER J.

    Nucl. Phys. B 268, 737, 1986

    被引用文献1件

  • <no title>

    KAY B. S.

    Class. Quant. Grav. 4, 893, 1987

    被引用文献1件

  • <no title>

    GIBBONS G. W.

    Phys. Rev. D 66, 064024, 2002

    被引用文献1件

  • <no title>

    KONOPLYA R. A.

    Nucl. Phys. B 777, 182, 2007

    被引用文献1件

  • <no title>

    KONOPLYA R. A.

    Phys. Rev. Lett. 103, 161101, 2009

    被引用文献1件

  • <no title>

    KONOPLYA R. A.

    Phys. Rev. D 78, 104017, 2008

    被引用文献1件

  • <no title>

    TAKAHASHI T.

    Phys. Rev. D 80, 104021, 2009

    被引用文献1件

  • <no title>

    TAKAHASHI T.

    Prog. Theor. Phys. 124, 711, 2010

    被引用文献1件

  • <no title>

    GLEISER R. J.

    Phys. Rev. D 72, 124002, 2005

    被引用文献1件

  • <no title>

    DOTTI G.

    Phys. Rev. D 72, 044018, 2005

    被引用文献1件

  • <no title>

    DOTTI G.

    Class. Quant. Grav. 22, L1, 2005

    被引用文献1件

  • <no title>

    BEROIZ M.

    Phys. Rev. D 76, 024012, 2007

    被引用文献1件

  • <no title>

    KONOPLYA R. A.

    Phys. Rev. D 77, 104004, 2008

    被引用文献1件

  • <no title>

    MONCRIEF V.

    Phys. Rev. D 9, 2707, 1974

    被引用文献1件

  • <no title>

    MONCRIEF V.

    Phys. Rev. D 10, 1057, 1974

    被引用文献1件

  • <no title>

    MOURA F.

    Class. Quant. Grav. 24, 361, 2007

    被引用文献1件

  • <no title>

    CARDOSO V.

    Phys. Rev. D 68, 061503, 2003

    被引用文献1件

  • <no title>

    CARDOSO V.

    Phys. Rev. D 67, 064026, 2003

    被引用文献1件

  • <no title>

    CARDOSO V.

    Phys. Rev. D 70, 024002, 2004

    被引用文献1件

  • <no title>

    CARDOSO V.

    Phys. Rev. D 68, 044024, 2003

    被引用文献1件

  • <no title>

    KONOPLYA R. A.

    Phys. Rev. D 68, 024018, 2003

    被引用文献1件

  • <no title>

    HWANG S.

    Geometriae Dedicata 71, 5, 1998

    被引用文献1件

  • <no title>

    KODAMA H.

    Prog. Theor. Phys. 112, 249, 2004

    被引用文献1件

  • <no title>

    TOMIMATSU A.

    Phys. Rev. D 71, 124044, 2005

    被引用文献1件

  • <no title>

    FAULKNER T.

    Class. Quant. Grav. 27, 205007, 2010

    被引用文献1件

  • Brane world cosmology: Gauge-invariant formalism for perturbation

    Kodama H , Ishibashi A , Seto O

    PHYSICAL REVIEW D 62(6), 064022, 2000-09-15

    機関リポジトリ DOI 被引用文献17件

  • <no title>

    CARDOSO V.

    Phys. Rev. D 64, 084017, 2001

    被引用文献2件

  • <no title>

    GIBBONS G. W.

    Phys. Rev. Lett. 89, 041101, 2002

    被引用文献9件

  • <no title>

    HOROWITZ G. T.

    Phys. Rev. D 62, 024027, 2000

    被引用文献3件

各種コード

  • NII論文ID(NAID)
    110008711101
  • NII書誌ID(NCID)
    AA00791466
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    03759687
  • NDL 記事登録ID
    11201176
  • NDL 雑誌分類
    ZM35(科学技術--物理学)
  • NDL 請求記号
    Z53-A468
  • データ提供元
    CJP書誌  NDL  NII-ELS  IR  NDL-Digital 
ページトップへ