Simultaneous induction of calcium transients in embryoid bodies using microfabricated electrode substrates(CELL AND TISSUE ENGINEERING)

Abstract

Precise control of differentiation processes of pluripotent stem cells is a key component for the further development of regenerative medicine. For this purpose, combining a cell-aggregate-size treatment for regulating intercellular signal transmissions and an electrical stimulation technique for inducing cellular responses is a promising approach. In the present study, we developed microfabricated electrode substrates that allow simultaneous stimulation of embryoid bodies (EBs) of P19 cells. Mouse embryonal carcinoma P19 cells can be induced to differentiate into three germ layers and serve as a promising stem cell model. Microcavity-array patterns were fabricated onto indium-tin-oxide (ITO) substrates using a standard photo-lithography technique, and uniform-sized EBs of P19 cells were inserted into each microcavity. Electrical stimulation was applied to the EBs through substrate electrodes and stimulus-induced intracellular calcium transients were monitored. We confirmed that the developed electrode device could simultaneously stimulate smaller (200μm diameter) and larger (500μm diameter) EBs inserted in the microcavities and induce specific spatio-temporal patterns of intracellular calcium transients in the EBs with fine reproducibility. We concluded that the developed microcavity array with embedded electrodes could simultaneously and effectively stimulate uniform-sized EBs inserted in it. Therefore, it is a promising experimental tool for precisely controlling cell differentiation processes.

Journal

Journal of bioscience and bioengineering   [List of Volumes]

Journal of bioscience and bioengineering 112(6), 624-629, 2011-12  [Table of Contents]

The Society for Biotechnology, Japan

References:  23

You must have a user ID to see the references.If you already have a user ID, please click "Login" to access the info.New users can click "Sign Up" to register for an user ID.

Preview

Preview

Codes

  • NII Article ID (NAID) :
    110008897340
  • NII NACSIS-CAT ID (NCID) :
    AA11307678
  • Text Lang :
    ENG
  • Article Type :
    ART
  • ISSN :
    13891723
  • NDL Article ID :
    023359611
  • NDL Call No. :
    Z53-S65
  • Databases :
    CJP  NDL  NII-ELS 

Share