微分方程式に対する構造保存数値解法(サーベイ,<特集>科学技術計算と数値解析研究部会)  [in Japanese] Structure-Preserving Numerical Methods for Differential Equations(Survey,<Special Topics>Activity Group "Scientific Computation and Numerical Analysis")  [in Japanese]

Search this Article

Author(s)

    • 松尾 宇泰 Matsuo Takayasu
    • 東京大学大学院情報理工学系研究科 Graduate School of Information Science and Technology, The University of Tokyo
    • 宮武 勇登 Miyatake Yuto
    • 東京大学大学院情報理工学系研究科 Graduate School of Information Science and Technology, The University of Tokyo

Abstract

微分方程式の数値解法のうち,微分方程式が持つ何らかの構造を離散系でも再現する特殊な数値解法のことを「構造保存数値解法」と呼ぶ.構造保存数値解法は,1980年代に常微分方程式系に対し提唱されてから長足の進歩を遂げ,最近では偏微分方程式系に対しても研究が進んでいる.本サーベイでは,これらの基礎と最近の進展について概説する.

"Structure-preserving numerical methods" for differential equations are such special methods that preserve certain structures in differential equations. Since the concept had been raised in 1980's for ordinary differential equations, the subject has been extensively studied, and now the related studies have spreaded also to partial differential equations. In this survey, the elements of such methods are outlined, and some recent progresses are briefly described.

Journal

  • Transactions of the Japan Society for Industrial and Applied Mathematics

    Transactions of the Japan Society for Industrial and Applied Mathematics 22(3), 213-251, 2012

    The Japan Society for Industrial and Applied Mathematics

References:  49

Codes

  • NII Article ID (NAID)
    110009518460
  • NII NACSIS-CAT ID (NCID)
    AN10367166
  • Text Lang
    JPN
  • Article Type
    REV
  • ISSN
    09172246
  • NDL Article ID
    024019027
  • NDL Call No.
    Z15-727
  • Data Source
    CJP  NDL  NII-ELS  J-STAGE 
Page Top