Recent experimental results show the irreversible binding of antifreeze proteins to ice surfaces(Papers presented at the Seminar, "NIAS International Seminar for Cryobiology and Cryotechnology")

  • CELIK Yeliz
    Department of Physics and Astronomy, Ohio University
  • DRORI Ran
    The Robert H. Smith Faculty of Agriculture, Food & Environmental Sciences, The Hebrew University of Jerusalem
  • PERTAYA-BRAUN Natalya
    Department of Physics and Astronomy, Ohio University
  • BAR-DOLEV Maya
    The Robert H. Smith Faculty of Agriculture, Food & Environmental Sciences, The Hebrew University of Jerusalem
  • DAVIES Peter L.
    Department of Biomedical and Molecular Sciences, Queen's University
  • BRASLAVSKY Ido
    Department of Physics and Astronomy, Ohio University:The Robert H. Smith Faculty of Agriculture, Food & Environmental Sciences, The Hebrew University of Jerusalem

書誌事項

タイトル別名
  • Recent experimental results show the irreversible binding of antifreeze proteins to ice surfaces

この論文をさがす

抄録

Antifreeze proteins (AFPs) are a subset of ice-binding proteins that evolved to arrest ice crystal growth and also inhibit the recrystallization of ice. An accepted theory for their activity, named the adsorption-inhibition hypothesis, posits that AFP binding to ice must be irreversible because the ice crystals do not grow within a freezing hysteresis (FH) gap. This theory has been criticized due to several experimental observations such as the dependence of FH values on the AFP concentration. Here we present recent fluorescence and microfluidics experimental results of our group supporting irreversible binding of AFPs to ice surfaces. i) Photo-bleaching of GFP-tagged AFP residing on the surface of an ice crystal held in the FH gap showed that there is neither exchange nor overgrowth of the bleached AFP. ii) Ice crystals bound by AFPs showed a measurable resistance to melting (melting hysteresis) demonstrating that the AFPs remain surface-bound at temperatures above the equilibrium melting point. iii) Using a temperature controlled microfluidic apparatus we demonstrated that small ice crystals formed in AFP solution stay intact even after the surrounding solution is depleted of AFPs. Additional measurements of surface fluorescence made during and after the exchange procedure showed no decrease in the fluorescence intensity, suggesting that bound AFPs did not leave the ice surface during the process. In light of these results, this review concludes that surface-adsorbed AFPs are the core source of the freezing hysteresis activity of the tested AFPs and that their adsorption to ice is irreversible.

収録刊行物

参考文献 (36)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ