ベイジアンネットにおける構造簡略化を用いた精度保証型確率推論アルゴリズム(人工知能,データマイニング) Approximate Probabilistic Reasoning Algorithm Based on Simplifying Connecting Structure and on Assuring Reasoning Results for Bayesian Networks

この論文をさがす

著者

抄録

複数の確率変数間の依存関係を視覚的に表現可能な確率モデルの一つであるベイジアンネット(Bayesian Network: BN)は,その結合構造を活用した確率推論が可能であり,データマイニングや意思決定システム等,多様な分野への適用例が報告されている.本論文では,BNの結合構造簡略化処理によって計算量抑制と推論精度向上を実現した上で,精度保証処理を通じて利用者の要求に応じた信頼性の高い推論値を出力可能な近似確率推論アルゴリズムExtended-LBPCを提案した.確率的,構造的な特徴を有する複数のBNを対象に計算機実験を実施し,既存アルゴリズムとの比較を通して提案アルゴリズムの基本的特性,及び推論性能について評価する.

収録刊行物

  • 電子情報通信学会論文誌. D, 情報・システム

    電子情報通信学会論文誌. D, 情報・システム J96-D(11), 2716-2727, 2013-11-01

    一般社団法人電子情報通信学会

各種コード

  • NII論文ID(NAID)
    110009661662
  • NII書誌ID(NCID)
    AA12099634
  • 本文言語コード
    JPN
  • ISSN
    18804535
  • NDL 記事登録ID
    024977227
  • NDL 請求記号
    Z16-779
  • データ提供元
    NDL  NII-ELS 
ページトップへ