有限要素法によるポアソン方程式のGPU向きSpMV計算

この論文にアクセスする

この論文をさがす

著者

抄録

3 次元ポアソン方程式に対し有限要素法による離散化を行い,ポアソン方程式に対して共役勾配法を適用し,その反復計算の中で最も計算コストの掛かる SpMV 計算において,GPU を用いて高速化を図ることを目的とする.メモリバンド幅の大きい GPU の特性を引き出すため,疎行列の格納に Compressed Diagonal Storage(CDS) を適用した.その結果,GPU による行列ベクトル積の演算性能の最大値は,倍精度浮動小数演算で 56GFLOPS の性能を得た.またメモリバンド幅も 245[GB/s] となり,理論性能値の 85%に達した.これらの性能の要因として,CDS 形式が行列やベクトルでの間接参照のない格納方法であることや,ループアンローリングが可能であること,また GPU の Kepler アーキテクチャでの Read-only データキャッシュの利用などが要因である.さらに有限要素法からなる行列の対称性を利用し,メモリ削減とそれに伴うループ削減が演算性能への影響に最も効果的であった.

収録刊行物

  • 研究報告ハイパフォーマンスコンピューティング(HPC)

    研究報告ハイパフォーマンスコンピューティング(HPC) 2015-HPC-148(15), 1-7, 2015-02-23

    一般社団法人情報処理学会

キーワード

各種コード

  • NII論文ID(NAID)
    110009877724
  • NII書誌ID(NCID)
    AN10463942
  • 本文言語コード
    JPN
  • 資料種別
    Technical Report
  • データ提供元
    NII-ELS  IPSJ 
ページトップへ