Molecular mechanisms underlying nucleocytoplasmic shuttling of actinin-4.

HANDLE オープンアクセス

この論文をさがす

抄録

In addition to its well-known role as a crosslinker of actin filaments at focal-adhesion sites, actinin-4 is known to be localized to the nucleus. In this study, we reveal the molecular mechanism underlying nuclear localization of actinin-4 and its novel interactions with transcriptional regulators. We found that actinin-4 is imported into the nucleus through the nuclear pore complex in an importin-independent manner and is exported by the chromosome region maintenance-1 (CRM1)-dependent pathway. Nuclear actinin-4 levels were significantly increased in the late G2 phase of the cell cycle and were decreased in the G1 phase, suggesting that active release from the actin cytoskeleton was responsible for increased nuclear actinin-4 in late G2. Nuclear actinin-4 was found to interact with the INO80 chromatin-remodeling complex. It also directs the expression of a subset of cell-cycle-related genes and interacts with the upstream-binding factor (UBF)-dependent rRNA transcriptional machinery in the M phase. These findings provide molecular mechanisms for both nucleocytoplasmic shuttling of proteins that do not contain a nuclear-localization signal and cell-cycle-dependent gene regulation that reflects morphological changes in the cytoskeleton.

収録刊行物

関連プロジェクト

もっと見る

詳細情報 詳細情報について

  • CRID
    1050001335696323456
  • NII論文ID
    120002561115
  • NII書誌ID
    AA00694823
  • ISSN
    00219533
  • HANDLE
    2433/130601
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • IRDB
    • CiNii Articles
    • KAKEN

問題の指摘

ページトップへ