Evidence for instantaneous e-vector detection in the honeybee using an associative learning paradigm

HANDLE オープンアクセス

抄録

Many insects use the polarization pattern of the sky for obtaining compass information during orientation or navigation. E-vector information is collected by a specialized area in the dorsal-most part of the compound eye, the dorsal rim area (DRA). We tested honeybees' capability of learning certain e-vector orientations by using a classical conditioning paradigm with the proboscis extension reflex. When one e-vector orientation (CS+) was associated with sugar water (US), while another orientation (CS-) was not rewarded, the honeybees could discriminate CS+ from CS-. Bees, whose DRA was inactivated by painting, did not learn CS+. When ultraviolet polarized light (350 nm) was used for CS, the bees discriminated CS+ from CS-, but no discrimination was observed in blue (442 nm) or green light (546 nm). Our data indicate that honeybees can learn and discriminate between different e-vector orientations, sensed by the UV receptors of the DRA, suggesting that bees can determine their flight direction from polarized UV skylight during foraging. Fixing the bees' heads during the experiments did not prevent learning, indicating that they use an "instantaneous" algorithm of e-vector detection; i.e. the bees do not need to actively scan the sky with their DRAs ("sequential" method) to determine e-vector orientation.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1050564288963069440
  • NII論文ID
    120003762599
  • HANDLE
    2115/48200
  • ISSN
    09628452
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • IRDB
    • CiNii Articles

問題の指摘

ページトップへ