Inelastic electron tunneling process for alkanethiol self-assembled monolayers

この論文をさがす

抄録

Recent investigations of inelastic electron tunneling spectroscopy (IETS) for alkanethiol self-assembled monolayers (SAMs) are reviewed. Alkanethiol SAMs are usually prepared by immersing a gold substrate into a solution of alkanethiol molecules, and they are very stable, even under ambient conditions. Thus, alkanethiol SAMs have been used as typical molecules for research into molecular electronics. Infrared spectroscopy and electron energy loss spectroscopy (EELS) have frequently been employed to characterize SAMs on the macroscopic scale. For characterization of alkanethiol SAMs on the nanometer scale region, or for single alkanethiol molecules through which electrons actually tunnel, IETS has proven to be an effective method. However, IETS experiments for alkanethiol SAMs employing different methods have shown large differences, i.e., there is a lack of standard data for alkanethiol SAMs with which to understand the IET process or to satisfactorily compare with theoretical investigations.An effective means of acquiring standard data is the formation of a tunneling junction with scanning tunneling microscopy (STM). After explanation of the STM experimental techniques, standard IETS data are presented whereby a contact condition between the tip and SAM is tuned. We have found that many vibrational modes are detected by STM-IETS, as is also the case for EELS. These results are compared with IET spectra measured with different tunneling junctions. In order to precisely investigate which vibrational modes are active in IETS, isotope labeling of alkanethiols with specifically synthesized isotopically substituted molecule has been examined. This method provides unambiguous assignments of IET spectra peaks and site selectivity for alkanethiol SAMs such that all parts of the alkanethiol molecules almost equally contribute to the IET process. The IET process is also discussed based on density functional theory and nonequilibrium Green's function calculations. These results quantitatively reproduce many the experimentally observed features, whereas Fermi's golden rule for IETS qualitatively explains the propensity rule and site selectivity observed in the experiments. However, comparison between experiment and theory reveals a large difference in IETS intensity for the C-H stretching mode that originates from the side chains of the alkanethiol molecules. In order to explain this difference, we discuss the importance of an intermolecular tunneling process in the SAM. Application of STM-IETS to identify a hydrogenated alkanethiol molecule inserted into a deuterated alkanethiol SAM matrix is also demonstrated. © 2012 Elsevier Ltd.

収録刊行物

関連プロジェクト

もっと見る

詳細情報 詳細情報について

  • CRID
    1050001335942349440
  • NII論文ID
    120005223456
  • NII書誌ID
    AA00791411
  • ISSN
    00796816
  • Web Site
    http://hdl.handle.net/2297/33401
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • IRDB
    • CiNii Articles
    • KAKEN

問題の指摘

ページトップへ