Structure of dihydrouridine synthase C (DusC) from Escherichia coli

HANDLE オープンアクセス

抄録

Dihydrouridine (D) is one of the most widely conserved tRNA modifications. Dihydrouridine synthase (Dus) is responsible for introducing D modifications into RNA by the reduction of uridine. Recently, a unique substrate-recognition mechanism using a small adapter molecule has been proposed for Thermus thermophilus Dus (TthDusC). To acquire insight regarding its substrate-recognition mechanism, the crystal structure of DusC from Escherichia coli (EcoDusC) was determined at 2.1 angstrom resolution. EcoDusC was shown to be composed of two domains: an N-terminal catalytic domain and a C-terminal tRNA-binding domain. An L-shaped electron density surrounded by highly conserved residues was found in the active site, as observed for TthDus. Structure comparison with TthDus indicated that the N-terminal region has a similar structure, whereas the C-terminal domain has marked differences in its relative orientation to the N-terminal domain as well as in its own structure. These observations suggested that Dus proteins adopt a common substrate-recognition mechanism using an adapter molecule, whereas the manner of tRNA binding is diverse.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1050001339014429056
  • NII論文ID
    120005317013
  • HANDLE
    2115/53114
  • ISSN
    17443091
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • IRDB
    • CiNii Articles

問題の指摘

ページトップへ