軸受鋼のモードII疲労過程における水素誘起組織変化

  • 藤田 慎治
    九州大学大学院工学府
  • 峯 洋二
    九州大学大学院工学研究院機械工学部門 産業技術総合研究所水素先端材料科学研究センター
  • 松岡 三郎
    九州大学大学院工学研究院機械工学部門 産業技術総合研究所水素先端材料科学研究センター
  • 村上 敬宜
    九州大学大学院工学研究院機械工学部門 産業技術総合研究所水素先端材料科学研究センター

書誌事項

タイトル別名
  • Hydrogen-Induced Microstructural Change under Mode II Fatigue for a Tempered Bearing Steel
  • 軸受鋼のモード2疲労過程における水素誘起組織変化
  • ジクウケ コウ ノ モード 2 ヒロウ カテイ ニ オケル スイソ ユウキ ソシキ ヘンカ

この論文をさがす

抄録

Slip band-like microstructural change formed under the cyclic shear stress coupled with hydrogen has a crucial importance to clarify the basic mechanism in the presence of hydrogen of Mode II fatigue failure. The authors' previous research works have indicated that the slip band-like microstructural changes are formed by the hydrogen enhanced slip deformation, and this microstructural change occurrence due to the hydrogen is detrimental when compared with a surface inclusion for the fatigue fracture life. The slip band-like microstructural change was observed by the electron backscattering diffraction (EBSD), scanning ion microscopy (SIM) and transmission electron microscopy (TEM). Numerous Mode II fatigue cracks and slip band-like microstructural changes were observed only in the hydrogen-precharged specimens. The EBSD analysis revealed that the blocks in the martensite structure in the vicinity of the slip band-like microstructural change were arranged along the slip band-like microstructural change. The SIM and TEM analyses revealed that the slip band-like microstructural change consists of band structures and that structure differed from base tempered martensite. Therefore, it is presumed that cyclic shear stresses act on the base tempered martensite and hydrogen enhanced slip deformation in the hydrogen-precharged specimens, as a result base tempered martensite structure is deformed, and eventually produces slip band-like microstructural change along the two shear stress directions.

収録刊行物

  • 材料

    材料 58 (12), 1009-1016, 2009

    公益社団法人 日本材料学会

被引用文献 (3)*注記

もっと見る

参考文献 (13)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ