シングルポイントTAB接合プロセスの研究 (第1報) 加圧履歴制御機構を有するシングルポイントTABボンダーの開発

DOI

書誌事項

タイトル別名
  • Study on Single Point TAB Bonding Process. (Report 1). Development of Single point TAB Bonder with Loading Profile Control Mechanism.
  • Study on Single Point TAB Bonding Process (Report 1)
  • シングルポイントTAB接合プロセスの研究(第1報)

抄録

TAB (Tape Automated Bonding) technology is the main method in IC interconnection technology, because it can be applied to fine pitch, under 100 μm pitch. In the conventional TAB technology which is the gang bonding technology, bonding under the uniform loading and heating are very difficult. So, single point TAB technology which is to bond gold bumps one at a time on the IC pad with TAB lead is proposed. For the thermosonic bonding used in the single point TAB technology, the deformation behavior of the bonding material and the working of the ultrasonic vibration are very significant. An applied load that is one of the bonding parameters in the single point TAB process has influence on the deformation behavior and the working of the ultrasonic vibration. So, in this report, we designed and manufactured by way of trial the single point TAB bonder with the control mechanism of the loading pattern in order to elucidate the single point TAB process. The loading force is controlled by the moving of the tool tip. Then, the control ability is dominated by the spring constant of the loading system, moving velosity and moving resolution of the tool tip. A spring constant of the loading system is very important factor for the design of a loadig system, because it has influence on the response or the stability of applied load for the change of the bump height or the position of a tool tip. The developped bonder had the following ability; 1) a spring constant of the loading system is 0.00175 N/μm, and so the loading fluctuation for the change of the bumpheight or the position of a tool tip is under 0.01 N. 2) the loading force is controlled in resolution of 0.007 N and monitored by ICP (Integrated Circuit Piezoelectric) in process.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1390001204722909184
  • NII論文ID
    130003764504
  • DOI
    10.2207/qjjws.14.179
  • ISSN
    24348252
    02884771
  • 本文言語コード
    ja
  • データソース種別
    • JaLC
    • Crossref
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用不可

問題の指摘

ページトップへ