Can intermediate-frequency magnetic fields affect memory function-related gene expressions in hippocampus of C57BL/6J mice?

  • Win-Shwe Tin-Tin
    Center for Environmental Health Sciences, National Institute for Environmental Studies
  • Ohtani Shin
    Department of Environmental Health, National Institute of Public Health
  • Ushiyama Akira
    Department of Environmental Health, National Institute of Public Health
  • Fujimaki Hidekazu
    Center for Environmental Risk Research, National Institute for Environmental Studies
  • Kunugita Naoki
    Department of Environmental Health, National Institute of Public Health

この論文をさがす

抄録

Recently, a cooking appliance based on the principle of electromagnetic induction has come to be used domestically on a widespread basis; this induction heating cooking hob mainly generates intermediate-frequency magnetic fields (IF-MF). However, whether electromagnetic fields originating from household appliances represent a health risk remains uncertain. We investigated the effect of IF-MF on the expressions of memory function-related genes and related transduction molecules in the mouse hippocampus. Male and female C57BL/6J mice were allotted to a control (sham-exposed), an exposure, or a recovery (one week after exposure) group and were exposed to IF-MF (21 kHz, 3.8 mT) one hour per day for 2 weeks. Twenty-four hour after final exposure, the expression levels of memory function-related genes and the mRNA levels for signal transduction pathway molecules in the hippocampi were examined using real-time RT-PCR. The relative mRNA expression levels of the N-methyl-D aspartate (NMDA) receptor subunits NR1, NR2A, and NR2B as well as transcription factors (calcium/calmodulin-dependent protein kinase (CaMK) -IV, cyclic AMP responsive element binding protein (CREB) -1) and neurotrophins (nerve growth factor (NGF), and brain-derived neurotrophic factors (BDNF)) were not significantly altered in the IF-MF-exposed mice. We also examined the morphology of the hippocampus using a histological analysis, but no changes in the IF-MF-exposed mice were seen. This is the first in vivo study to show that IF-MF exposure did not affect the expression levels of memory function-related genes in the hippocampus of C57BL/6J mice. The present findings suggest that IF-MF exposure may not affect cognitive function in the present animal model.

収録刊行物

被引用文献 (3)*注記

もっと見る

参考文献 (33)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ