Ultrasensitive Biosensor for Detection of Organophosphorus Pesticides Based on a Macrocycle Complex/Carbon Nanotubes Composite and 1-Methyl-3-octylimidazolium Tetrafluoroborate as Binder Compound

DOI PDF Web Site Web Site Web Site ほか1件をすべて表示 一部だけ表示 被引用文献1件 参考文献41件

この論文をさがす

抄録

This work describes the highly sensitive detection of organophosphorus pesticides employing the cobalt(II) 4,4,4,4-tetrasulfo-phthalocyanine (CoTSPc) macrocycle complex, carbon nanotubes (CNT), and 1-methyl-3-octylimidazolium tetrafluoroborate (OMIM[BF4]). The technique is based on enzyme acetylcholinesterase (AChE) inhibition. The composite was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and amperometry. The AChE was immobilized on the composite electrode surface by cross-linking with glutaraldehyde and chitosan. The synergistic action of the CoTSPc/CNT/OMIM[BF4] composite showed excellent electrocatalytic activity, with a low applied potential for the amperometric detection of thiocholine (TCh) at 0.0 V vs. Ag/AgCl. The calculated catalytic rate constant, kcat, was 3.67 × 103 mol−1 L s−1. Under the optimum conditions, the inhibition rates of these pesticides were proportional to their concentrations in the ranges of 1.0 pmol L−1 to 1.0 nmol L−1 (fenitrothion), 2.0 pmol L−1 to 8.0 nmol L−1 (dichlorvos), and 16 pmol L−1 to 5.0 nmol L−1 (malathion).

収録刊行物

  • Analytical Sciences

    Analytical Sciences 31 (1), 29-35, 2015

    社団法人 日本分析化学会

被引用文献 (1)*注記

もっと見る

参考文献 (41)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ