Weak activity of UDP-glucuronosyltransferase toward Bisphenol analogs in mouse perinatal development

DOI 機関リポジトリ HANDLE Web Site Web Site ほか1件をすべて表示 一部だけ表示 被引用文献1件
  • YABUSAKI Risa
    Laboratory of Veterinary Biochemistry, Graduate School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi Ebetsu, Hokkaido 069–8501, Japan
  • IWANO Hidetomo
    Laboratory of Veterinary Biochemistry, Graduate School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi Ebetsu, Hokkaido 069–8501, Japan
  • TSUSHIMA Sumito
    Laboratory of Veterinary Biochemistry, Graduate School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi Ebetsu, Hokkaido 069–8501, Japan
  • KOIKE Nanako
    Laboratory of Veterinary Biochemistry, Graduate School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi Ebetsu, Hokkaido 069–8501, Japan
  • OHTANI Naoko
    Laboratory of Veterinary Biochemistry, Graduate School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi Ebetsu, Hokkaido 069–8501, Japan
  • TANEMURA Kentaro
    Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi 981–8555, Japan
  • INOUE Hiroki
    Laboratory of Veterinary Biochemistry, Graduate School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi Ebetsu, Hokkaido 069–8501, Japan
  • YOKOTA Hiroshi
    Laboratory of Veterinary Biochemistry, Graduate School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi Ebetsu, Hokkaido 069–8501, Japan

この論文をさがす

抄録

Bisphenol A (BPA) is a widely used industrial chemical that disrupts endocrine function. BPA is an endocrine disrupting chemical (EDC) that has been demonstrated to affect reproductive organ development, brain development, metabolic disease and post-natal behavior. Accordingly, Bisphenol analogs, Bisphenol F (BPF, bis (4-hydroxyphenyl) methane) and Bisphenol AF (BPAF, 4,4-hexafluoroisopropylidene) diphenol) are used as replacements for BPA. BPA is mainly metabolized by UDP-glucuronosyltransferase (UGT), UGT2B1, but this effective metabolizing system is weak in the fetus. In the present study, we demonstrated that hepatic UGT activity toward BPAF was very weak, in comparison with BPA and BPF, in the fetus, pups and dams. Conversely, hepatic UGT activity toward BPF was very weak in the fetus and newborn pups, and was increased to the same level as BPA post-partum. In conclusion, BPAF possibly tends to accumulate in the fetus, because of weak metabolism during the perinatal period, suggesting that the metabolism of individual Bisphenol analogs requires assessment to properly gauge their risks.

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ