Application of Internal Standard Method for Several 3d-Transition Metallic Elements in Flame Atomic Absorption Spectrometry Using a Multi-wavelength High-resolution Spectrometer

DOI PDF Web Site Web Site Web Site View 1 Remaining Hide 14 References

Search this article

Abstract

We investigated a simultaneous internal standard method in flame atomic absorption spectrometry (FAAS), in order to better the analytical precision of 3d-transition metals contained in steel materials. For this purpose, a new spectrometer system for FAAS, comprising a bright xenon lamp as the primary radiation source and a high-resolution Echelle monochromator, was employed to measure several absorption lines at a wavelength width of ca. 0.3 nm at the same time, which enables the absorbances of an analytical line and also an internal standard line to be estimated. In considering several criteria for selecting an internal standard element and the absorption line, it could be suggested that platinum-group elements: ruthenium, rhodium, or palladium, were suitable for an internal standard element to determine the 3d-transition metal elements, such as titanium, iron, and nickel, by measuring an appropriate pair of these absorption lines simultaneously. Several variances of the absorption signal, such as a variation in aspirated amounts of sample solution and a short-period drift of the primary light source, would be corrected and thus reduced, when the absorbance ratio of the analytical line to the internal standard line was measured. In Ti-Pd, Ni-Rh, and Fe-Ru systems chosen as typical test samples, the repeatability of the signal respnses was investigated with/without the internal standard method, resulting in better precision when the internal standard method was applied in the FAAS with a nitrous oxide–acetylene flame rather than an air–acetylene flame.

Journal

  • Analytical Sciences

    Analytical Sciences 33 (2), 217-222, 2017

    The Japan Society for Analytical Chemistry

References(14)*help

See more

Details 詳細情報について

Report a problem

Back to top