Neprilysin Is Suppressed by Dual-Specificity Tyrosine-Phosphorylation Regulated Kinase 1A (DYRK1A) in Down-Syndrome-Derived Fibroblasts

DOI 機関リポジトリ HANDLE Web Site Web Site ほか1件をすべて表示 一部だけ表示 被引用文献4件 参考文献33件 オープンアクセス
  • Kawakubo Takashi
    Department of Genome-based Drug Discovery, Graduation School of Biomedical Sciences, Nagasaki University
  • Mori Ryotaro
    Department of Genome-based Drug Discovery, Graduation School of Biomedical Sciences, Nagasaki University
  • Shirotani Keiro
    Department of Genome-based Drug Discovery, Graduation School of Biomedical Sciences, Nagasaki University Unit for Dementia Research and Drug Discovery, Graduation School of Biomedical Sciences, Nagasaki University
  • Iwata Nobuhisa
    Department of Genome-based Drug Discovery, Graduation School of Biomedical Sciences, Nagasaki University Unit for Dementia Research and Drug Discovery, Graduation School of Biomedical Sciences, Nagasaki University
  • Asai Masashi
    Department of Genome-based Drug Discovery, Graduation School of Biomedical Sciences, Nagasaki University Unit for Dementia Research and Drug Discovery, Graduation School of Biomedical Sciences, Nagasaki University

この論文をさがす

抄録

<p>Amyloid-β peptide (Aβ) accumulation is a triggering event leading to the Alzheimer’s disease (AD) pathological cascade. Almost all familial AD-linked gene mutations increase Aβ production and accelerate the onset of AD. The Swedish mutation of amyloid precursor protein (APP) affects β-secretase activity and increases Aβ production up to ca. 6-fold in cultured cells; the onset age is around 50. Down syndrome (DS) patients with chromosome 21 trisomy present AD-like pathologies at earlier ages (40s) compared with sporadic AD patients, because APP gene expression is 1.5-fold higher than that in healthy people, thus causing a 1.5-fold increase in Aβ production. However, when comparing the causal relationship of Aβ accumulation with the onset age between the above two populations, early DS pathogenesis does not appear to be accounted for by the increased Aβ production alone. In this study, we found that neprilysin, a major Aβ-degrading enzyme, was downregulated in DS patient-derived fibroblasts, compared with healthy people-derived fibroblasts. Treatment with harmine, an inhibitor of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), which is located in the DS critical region of chromosome 21, and gene knockdown of DYRK1A, upregulated neprilysin in fibroblasts. These results suggest that a decrease in the Aβ catabolic rate may be, at least in part, one of the causes for accelerated AD-like pathogenesis in DS patients if a similar event occurs in the brains, and that neprilysin activity may be regulated directly or indirectly by DYRK1A-mediated phosphorylation. DYRK1A inhibition may be a promising disease-modifying therapy for AD via neprilysin upregulation.</p>

収録刊行物

被引用文献 (4)*注記

もっと見る

参考文献 (33)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ