The use of low [CO<sub>2</sub>] to estimate diffusional and non‐diffusional limitations of photosynthetic capacity of salt‐stressed olive saplings

抄録

<jats:title>ABSTRACT</jats:title><jats:p>In this study it has been shown that increased diffusional resistances caused by salt stress may be fully overcome by exposing attached leaves to very low [CO<jats:sub>2</jats:sub>] (∼ 50 <jats:italic>µ</jats:italic>mol  mol<jats:sup>−1</jats:sup>), and, thus a non‐destructive‐<jats:italic>in vivo</jats:italic> method to correctly estimate photosynthetic capacity in stressed plants is reported. Diffusional (i.e. stomatal conductance, <jats:italic>g</jats:italic><jats:sub>s</jats:sub>, and mesophyll conductance to CO<jats:sub>2</jats:sub>, <jats:italic>g</jats:italic><jats:sub>m</jats:sub>) and biochemical limitations to photosynthesis (<jats:italic>A</jats:italic>) were measured in two 1‐year‐old Greek olive cultivars (Chalkidikis and Kerkiras) subjected to salt stress by adding 200 m<jats:sc>m</jats:sc> NaCl to the irrigation water. Two sets of <jats:italic>A</jats:italic>–<jats:italic>C</jats:italic><jats:sub>i</jats:sub> curves were measured. A first set of standard <jats:italic>A</jats:italic>–<jats:italic>C</jats:italic><jats:sub>i</jats:sub> curves (i.e. without pre‐conditioning plants at low [CO<jats:sub>2</jats:sub>]), were generated for salt‐stressed plants. A second set of <jats:italic>A</jats:italic>–<jats:italic>C</jats:italic><jats:sub>i</jats:sub> curves were measured, on both control and salt‐stressed plants, after pre‐conditioning leaves at [CO<jats:sub>2</jats:sub>] of ∼ 50 <jats:italic>µ</jats:italic>mol mol<jats:sup>−1</jats:sup> for about 1.5 h to force stomatal opening. This forced stomata to be wide open, and <jats:italic>g</jats:italic><jats:sub>s</jats:sub> increased to similar values in control and salt‐stressed plants of both cultivars. After <jats:italic>g</jats:italic><jats:sub>s</jats:sub> had approached the maximum value, the <jats:italic>A</jats:italic>–<jats:italic>C</jats:italic><jats:sub>i</jats:sub> response was again measured. The analysis of the photosynthetic capacity of the salt‐stressed plants based on the standard <jats:italic>A</jats:italic>–<jats:italic>C</jats:italic><jats:sub>i</jats:sub> curves, showed low values of the <jats:italic>J</jats:italic><jats:sub>max</jats:sub> (maximum rate of electron transport) to <jats:italic>V</jats:italic><jats:sub>cmax</jats:sub> (RuBP‐saturated rate of Rubisco) ratio (1.06), that would implicate a reduced rate of RuBP regeneration, and, thus, a metabolic impairment. However, the analysis of the <jats:italic>A</jats:italic>–<jats:italic>C</jats:italic><jats:sub>i</jats:sub> curves made on pre‐conditioned leaves, showed that the estimates of the photosynthetic capacity parameters were much higher than in the standard <jats:italic>A</jats:italic>–<jats:italic>C</jats:italic><jats:sub>i</jats:sub> responses. Moreover, these values were similar in magnitude to the average values reported by Wullschleger (<jats:italic>Journal of Experimental Botany</jats:italic> 44, 907–920, 1993) in a survey of 109 C<jats:sub>3</jats:sub> species. These findings clearly indicates that: (1) salt stress did affect <jats:italic>g</jats:italic><jats:sub>s</jats:sub> and <jats:italic>g</jats:italic><jats:sub>m</jats:sub> but not the biochemical capacity to assimilate CO<jats:sub>2</jats:sub> and therefore, in these conditions, the sum of the diffusional resistances set the limit to photosynthesis rates; (2) there was a linear relationship (<jats:italic>r</jats:italic><jats:sup>2</jats:sup> = 0.68) between <jats:italic>g</jats:italic><jats:sub>m</jats:sub> and <jats:italic>g</jats:italic><jats:sub>s</jats:sub>, and, thus, changes of <jats:italic>g</jats:italic><jats:sub>m</jats:sub> can be as fast as those of <jats:italic>g</jats:italic><jats:sub>s</jats:sub>; (3) the estimates of photosynthetic capacity based on <jats:italic>A</jats:italic>–<jats:italic>C</jats:italic><jats:sub>i</jats:sub> curves made without removing diffusional limitations are artificially low and lead to incorrect interpretations of the actual limitations of photosynthesis; and (4) the analysis of the photosynthetic properties in terms of stomatal and non‐stomatal limitations should be replaced by the analysis of diffusional and non‐diffusional limitations of photosynthesis. Finally, the C<jats:sub>3</jats:sub> photosynthesis model parameterization using <jats:italic>in vitro</jats:italic>‐measured and <jats:italic>in vivo</jats:italic>‐measured kinetics parameters was compared. Applying the <jats:italic>in vivo</jats:italic>‐measured Rubisco kinetics parameters resulted in a better parameterization of the photosynthesis model.</jats:p>

収録刊行物

被引用文献 (5)*注記

もっと見る

キーワード

詳細情報 詳細情報について

問題の指摘

ページトップへ