Carbon isotope discrimination in leaf and stem sugars, water-use efficiency and mesophyll conductance during different developmental stages in rice subjected to drought

この論文をさがす

抄録

<jats:p> Carbon isotope discrimination (Δ), growth analysis, water-use efficiency (WUE) and gas exchange characteristics were studied in rice plants (Oryza sativa L.) subjected to drought during different developmental stages. Drought caused major effects on growth, WUE, Δ and photosynthetic CO2 assimilation. Substantial differences in the Δ of the bulk biomass among different organs and in carbohydrates extracted from leaves and stems were observed. Possible influences of chemical composition, fractionation during translocation and seasonal changes in the ratio of intercellular and atmospheric partial pressures of CO2 on such differences in Δ are discussed. Stem carbohydrate Δ was correlated with relative growth rate, and, during early grain filling, was negatively correlated with WUE measured between flowering and early grain filling. Δ in leaf sugars was used to estimate mesophyll conductance (gm), the conductance to CO2 diffusion inside leaves, from the intercellular air spaces to the chloroplast. During ontogeny, gm showed a marked progressive decrease, evident in both droughted plants and fully irrigated controls. There was a positive correlation between the rate of CO2 assimilation and gm. The analysis of Δ in leaf and stem carbohydrates is proposed as a useful indicator of growth, WUE and photosynthetic parameters relevant for yield of rice under drought-prone conditions.</jats:p>

収録刊行物

被引用文献 (5)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ