Combined inversion for the three‐dimensional <i>Q</i> structure and source parameters using microearthquake spectra

抄録

<jats:p>The estimation of <jats:italic>Q</jats:italic> values and/or source corner frequencies <jats:italic>f</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub> from single‐station narrow‐band recordings of microearthquake spectra is a strongly nonunique problem. This is due to the fact that the spectra can be equally well fitted with low‐<jats:italic>Q</jats:italic>/high‐<jats:italic>f</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub> or a high‐<jats:italic>Q</jats:italic>/low‐<jats:italic>f</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub> spectral models. Here, a method is proposed to constrain this ambiguity by inverting a set of microearthquake spectra for a three‐dimensional <jats:italic>Q</jats:italic> model structure and model source parameters seismic moment (<jats:italic>M</jats:italic><jats:sub>o</jats:sub> ) and corner frequency (<jats:italic>f</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub> ) simultaneously. The inversion of whole path <jats:italic>Q</jats:italic> can be stated as a linear problem in the attenuation operator <jats:italic>t</jats:italic>* and solved using a tomographic reconstruction of the three‐dimensional <jats:italic>Q</jats:italic> structure. This <jats:italic>Q</jats:italic> structure is then used as a “geometrical constraint” for a nonlinear Marquardt‐Levenberg inversion of <jats:italic>M</jats:italic><jats:sub>o</jats:sub> and <jats:italic>f</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub> and a new <jats:italic>Q</jats:italic> value. The first step of the method consists of interactively fitting the observed microearthquake spectra by spectral models consisting of a source spectrum with an assumed high‐frequency decay, a single‐layer resonance filter to account for local site effects, and additional “whole path attenuation” along the ray path. From the obtained <jats:italic>Q</jats:italic> values, a three‐dimensional <jats:italic>Q</jats:italic> model is calculated using a tomographic reconstruction technique (SIRT). The individual <jats:italic>Q</jats:italic> values along each ray path are then used as <jats:italic>Q</jats:italic> starting values for a nonlinear iterative Marquardt‐Levenberg inversion of <jats:italic>M</jats:italic><jats:sub>o</jats:sub> and <jats:italic>f</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub> and a “new” <jats:italic>Q</jats:italic> value. Subsequently, the “new” <jats:italic>Q</jats:italic> values are used to reconstruct the next <jats:italic>Q</jats:italic> model which again provides starting values for the “next” nonlinear inversion of <jats:italic>M</jats:italic><jats:sub>o</jats:sub>, <jats:italic>f</jats:italic><jats:sub>c</jats:sub>, and <jats:italic>Q</jats:italic>. This process is repeated until the “goodness of fit measure” indicates no further improvement of the results. The method has been tested on a set of approximately 2800 <jats:italic>P</jats:italic> wave spectra (0.9 < <jats:italic>M</jats:italic> < 2.0) from the recordings of 635 microearth‐quakes from the Kaoiki seismic zone in Hawaii (Big Island) which were recorded at up to six stations. The hypocenters are distributed within a volume of approximately 18×l8×l5km (depth). The <jats:italic>Q</jats:italic> model uncertainties have been estimated on the basis of several different tests: Self‐consistency, constraining the comer frequencies, and additionally splitting the data set. The standard deviation of the final <jats:italic>Q</jats:italic> model which used a grid size of 1.5×1.5×2.0 km (depth) was less than 3% for the depth range 0–5 km, less than 5% between 5 and 7 km, and 7% between 7 and 9 km. The simulation of strong attenuation effects close to the surface shows that site effects may cause a corruption of the resulting <jats:italic>Q</jats:italic> model at shallow depths. For the given data set and depths below 3–5 km, the method is believed to be able to resolve the model dependent attenuation structure on a scale down to 1–2 km with a resolution of a few percent.</jats:p>

収録刊行物

被引用文献 (8)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ