Decreases in CD31 and CD47 Levels on the Cell Surface during Etoposide-Induced Jurkat Cell Apoptosis

  • Azuma Yutaro
    Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Toho University
  • Nakagawa Hideaki
    Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Toho University
  • Dote Kanae
    Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Toho University
  • Higai Koji
    Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Toho University
  • Matsumoto Kojiro
    Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Toho University

この論文をさがす

抄録

Engulfment of apoptotic cells is regulated by ‘eat me’ and ‘don’t eat me' signals on the cell surface. Alterations to the ‘eat me’ signals have been well described; however, very little is known about the ‘don’t eat me' signals on the cell surface during apoptosis. In the present study, apoptosis of Jurkat cells was induced by treatment with topoisomerase II inhibitor etoposide, and then the CD31 and CD47 levels on the apoptotic cell surface and in microparticles were estimated by flow cytometry and immunoblotting methods in the presence of caspase, metalloproteinase, and Rho-associated coiled-coil containing protein kinase 1 (ROCK1) inhibitors. The CD31 and CD47 levels on the cell surface of apoptotic Jurkat cells had decreased after treatment with etoposide. These decreases in CD31 and CD47 levels on the apoptotic cell surface were almost completely suppressed by the caspase 3 inhibitor, Ac-DEVD-CHO, and partially suppressed by caspase 8 (Ac-IETD-CHO) and caspase 9 (Ac-LEHE-CHO) inhibitors but not by the metalloproteinase inhibitors GM6001 and TAPI-0. Microparticle counts in culture supernatants were higher during etoposide-induced apoptosis. The ROCK1 inhibitor, Y27632, suppressed blebbing formation and microparticle release. Moreover, flow cytometry and immunoblotting revealed CD31 and CD47 in the microparticles. These results indicate that CD31 and CD47 were released by the apoptotic Jurkat cells into the culture supernatant in microparticles, but not in soluble forms, resulting in decreased levels on the apoptotic cell surface.

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (39)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ