馬由来Rhodococcus equiに関する研究 Studies on the characterization of Rhodococcus equi derived from horse

この論文にアクセスする

この論文をさがす

著者

    • 中澤, 宗生 ナカザワ, ムネオ

書誌事項

タイトル

馬由来Rhodococcus equiに関する研究

タイトル別名

Studies on the characterization of Rhodococcus equi derived from horse

著者名

中澤, 宗生

著者別名

ナカザワ, ムネオ

学位授与大学

麻布大学

取得学位

獣医学博士

学位授与番号

乙第220号

学位授与年月日

1984-06-06

注記・抄録

博士論文

Rhodcocous equi (Magnusson 1923) Goodfellow and Alderson 1979は子馬の肺炎・腸間膜リンパ節炎・潰瘍性腸炎・結合織炎および関節炎,あるいは豚の頸部リンパ節炎の原因菌として古くから知られているが,他方,馬・牛・豚・羊・人などの糞便や土壌からも分離され,広く自然界に分布していることが最近明らかにされてきた。この事実は,本菌が腐生菌として自然界や動物の糞便中に生存していることを示しているが,同時に子馬感染症の疫学においては,とくに馬の腸管に生息している本菌の存在を無視することはできない。したがって,本菌の生物学的および血清学的型別法を確立し,糞便由来株と病変部由来株との関連を解明する必要性が重要な課題として残されている。 一方,子馬における本菌の感染像は,わが国や諸外国における数多くの症例報告によってほぼ明らかにされたが,本菌の毒力因子や本症の病理発生といった基本的な問題についての検討は極めて少ないのが実状である。 著者は上記のR. equiに関する重要な問題点を解明するため,まず馬の糞便におけるR. equiの保有状況を調べ,本心の生態の一端を明らかにすることを試みた。ついで,糞便および病変部由来株の生理・生化学的性状を比較検討するとともに,血清群別法を確立し,血清群による特徴づけを行ない,その分布を比較することによって両者の関連性を検討した。さらに,本菌の毒力因子を解析するために,マウス培養細胞を実験モデルとして用い,一連の研究を実施した。1. 馬の糞便からのR. equiの定量培養 馬の糞便からR. equiを選択的かつ定量的に分離するための選択分離培地の検討を行なった。その結果,本菌の選択分離培地として報告されているNANAT培地にはR. equiに対する発育阻止作用があり,しかもそれが本培地に添加されている亜テルル酸カリウムの影響であることがわかった。したがって,この培地を用いての糞便における本菌の正確な定量培養は不可能であることが明らかとなった。 そこで,NANAT培地から亜テルル酸カリウムを除き,さらにナリジキシン酸(NA)10.0μg/ml,ノボビオシン(NB)12.5μg/mlおよびシクロヘキシミド(CH)20.0μg/mlを添加したNANC培地を試作し,糞便の定量培養に応用したところ,R. equi対する発育阻止作用は殆ど認められず,しかも共存菌の発育を抑える優れた培地であることが明らかとなった。 つぎに,NANC培地を用いて母馬と子馬の糞便におけるR. equiの定量培養を行なった。その結果,検査対象とした127頭の全例から本菌が分離された。糞便1グラム中の平均菌数は母馬において8.42×10^2 CFU,子馬において7.57×10^2 CFUであり,両者に菌数の差は認められなかった。また,母馬5頭の糞便内菌数の推絡を経時的に調べたところ,本菌は全期間(1980年1月~7月)を通して10^2 ~10^4 CFU/gの範囲で分離されたが,とくに季節的な菌数の変動は認められなかった。 このように,R. equiは馬の糞便内に常在しており,腸内細菌叢を構成する1菌種であることが明らかとなった。2. R. equiの生理・生化学的性状 本菌が馬の正常な糞便から例外なく分離されることから,本菌感染症における糞便由来株の存在を無視することはできない。 そこで,分離由来の相違により菌株間の生理・生化学的性状に特徴的な差異があるかどうかを知るために,糞便由来40株,病変部由来40株および参考株8株の計88株について,一般的な生理・生化学的性状23項目および19種類の菌体酵素活性を調べ比較した。その結果,糞便由来株も病変部由来株もおおむね参考株と同様の性状を示し,分離由来の相違による特徴的な差異は認められないことが明らかとなった。3. R. equiの血清群別 本研究におけるこれまでの成績から,R. equiが馬の腸内細菌叢を構成する1菌種であること,および糞便由来株と病変部由来株との間に生理・生化学的性状の差異は殆ど認められないことが明らかとなった。 そこで,血清学的性状にもとずく本菌の特徴づけ,すなわち血清群別法を確立し,糞便および病変部由来株の血清群の分布や異同を明らかにすることを目的として実験を行なった。併せてPrescottの血清型と著者の血清群との関連についても検討を加えた。1)血清群別法の確立 総計1,195株の分離株から代表株を選び,それらの血清学的性状を交差定量凝集反応と吸収テストにより検討し,血清群別用抗血清の作製を試みた。 代表株の抗血清はすべてホルマリン処理死菌でウサギを免疫して作製した。交差定量凝集反応において,ホルマリン処理抗原を凝集原とした場合,27代表株の抗血清はホモの抗原に対して1:640~1:2,560の凝集価を示し,このうち13の抗血清はホモの抗原とのみ特異的に反応したが,残りの14は凝集価は低いものの1~4のヘテロ抗原とも交差した。 一方,凝集原としてオートクレーブ処理抗原を用いた場合,27代表株の抗血清はホモの抗原に対して1:320~1:2,560の凝集価を示したが,ここのうちホモの抗原と特異的に反応した抗血清は1つのみで,他の26の抗血清は1~8のヘテロ抗原とも交差反応を示した。このようにオートクレーブ処理によって抗原の特異性が失われることがわかった。このことは,ホルマリン処理抗原のほうがオートグレープ処理抗原よりも株特異性があり,血清群別用抗原として適していることを示している。 しかし,ホルマリン処理抗原を用いた交差定量凝集反応でも14の抗血清に交差反応が認められたが,これらは対応するヘテロ抗原で吸収操作を行なった結果,特異抗体の存在が確認され,結局,総計27の特異抗血清を作製することができた。これらを血清群別用抗血清とし血清群1~27の番号を付した。 つぎに,分離株の血清群別を迅速かつ容易に行なうために,上記群別用抗血清を用いてスライド凝集反応を検討した。その結果,1:4~1:10に稀釈した群別用抗血清と抗原濃度McFarland No.10に調整したホルマリン処理抗原の組合せで,交差定量凝集反応の結果と同じ特異反応が得られ,スライド凝集反応による血清群別が可能となった。2)糞便および病変部由来株の血清群 上述のスライド凝集反応により糞便由来821株と病変部由来374株の群別を行ない血清群を比較した。 糞便由来株のうち84.3%(692株)は次の9つの血清群に群別された。群4(204株),群2(107株),群11(93株),群3(82株),群15(59株),群8(42株),群7(36株),群1(35群)および群14(34株)であり,残りの15.7%(129株)は別の18血清群(群:5,6,9,10,12,13,16~27)に属していた。 一方,病変部由来株では86.4%(323株)が群4(122株),群2(112株)および群8(89株)に属し,残りの13.6%(51株)は7血清群(群:1,3,5,6,7,9,11)に群別された。 以上のように,糞便由来株の血清群は病変部由来株のそれに比較すると多種多様であるが,上述の9つの血清群に集中する。また,病変部由来株も群4,群2および群8に集中しているが,これら3つの血清群は糞便由来株にも多く検出され,両者の関連が示唆された。3)Prescottの血清型との関連 Prescottは各種動物由来,R. equi97株を7つの血清型に分類している。そこで彼の血清型に属する菌株を入手し,著者の群別法でそれらの血清群を調べてみた。 その結果,Prescottの1型は著者の群4,2型は群16,3型は群2,4型は群12,5型は群21,6型は群1,および7型は群9にそれぞれ一致した。さらに,ATCCやNCTCから入手した8株の本菌も著者の血清群に全株群別された。 したがって,ここに確立した血清群別法は馬を含む各種動物や土壌由来株の一別にも応用できることが明らかとなり,本菌感染症の疫学的研究に広く活用できるものと思われる。4. R. equiの毒力 本菌の毒力因子や発症機序についてはこれまでに十分な検討が加えられたとはいえず,不明な点が少なくなかった。なかでも,本菌感染症の実験的再現は常に成功するものではなく,これは宿主側の条件もさることながら,用いた菌株に毒力の差異があるためと推測された。 そこで,本菌の毒力をマウスに対するLD_50,生体内での増殖態度,さらに培養したマクロファージや単球に対する態度を指標として検討した。 その結果,マウスに対するLD_50は菌株により異なり,10^8 CFU以上の株,10^7 CFUの株および10^6 CFUの株の3段階に分かれ,菌株により毒力に差があることがわかった。また,糞便および病変部由来株のマウスに対する毒力を比較したところ,明らかに病変部由来株に毒力株が多く認められた(P<0.01)。 そこで,本菌の毒力因子を調べるために,毒力株と非毒力株をマウスに注射し,経時的に病理組織検査を実施するとともに,脾臓における生菌数を調べたところ,毒力株は肝臓や脾臓の細網内皮系の細胞内で増殖しているのに対し,非毒力株ではそのような所見は全く得られなかった。したがって,毒力株と非毒力株の決定的な違いは生体内,とくに細網内皮系細胞内における増殖能の差にあることが明らかとなった。 さらに,上述の所見をin vitroで証明するために,培養したマウス腹腔マクロファージや馬の単球を用い両者の増殖能を比較したところ,毒力株はin vitroの細胞内でも増殖できるのに対し,非毒力株は増殖できず生残率は有意に低下した(P<0.01)。 前述の研究結果から,R. equiは外観健康な馬(母子とも)の糞便から高率(127/127)に検出されること,および本菌はその萊膜様抗原によって27種の血清群に分類されることが明らかとなった。馬の病変部由来株の86.4%(323/374株)は3種の血清群(群:2,4&8)に分類された。糞便由来株の84.3%(692/821株)は9種血清群(群:1,2,3,4,7,8,11,14&15)に分類されたが,血清群2,4および8に所属する株はその43.0%(352/821株)を占めていた。このことから,本菌による馬とくに子馬感染症の感染源として糞便中のR. equiが重要であり,本症は内因性感染として発症するものと推定した。そして,マウス感染実験およびマウスマクロファージと馬単球による食菌作用の実験成績から,R. equiの毒力は特定血清群の種類によらず,菌の細胞内増殖能の強弱(有無)によって規制されることを初めて証明した。

Rhodococcus equi is associated with several diseases of domestic animals, particulary purulent pneumonia, mesenteric lymphadenitis, ulcerative enteritis, cellulitis, and arthritis in foals, and tuberculosis-like lesions in porcine cervical lymph nodes. On the other hand, it has been isolated not only from the lesions of foals and swine but also from the feces of different domestic animals and from soil. Although it has also been found in the feces of healthy foals and mares, the pathogenic significance of its fecal isolates in foals has remained to be elucidated. Likewise, little attention has been paid to the epizootiological significance of R. equi harbored in the feces of healthy foals and mares. On the other hand, the clinical and pathological findings of R. equi infection in foals have been clarified by numerous case reports in many countries, including Japan. It has not always been successful, however, to reproduce this disease experimentally. Little is known about the virulence of R. equi for domestic animals, including the horse itself and laboratory animals. The author, therefore, made an attempt to settle the important problems as mentioned above. First, as a part of the epizootiological studies on R. equi infection investigation was carried out to clarify the distribution of the organism in the feces of foals and mares. In addition, an effort was made to establish the biotyping or serogrouping of R. equi in order to develop a suitable method to discriminate or characterize this organism isolated from the feces and lesions of horses. Another effort was made to elucidate the virulence of R. equi by using laboratory animal models and macrophages cultured in vitro. The results obtained are summarized as follows.1. Quantitative culture of R. equi from the feces of horses. In a preliminary examination with Woolcock's NANAT medium for selective isolation of R. equi, the medium was found to be partially inhibitory on the growth of R. equi. Therefore, it was modified to improve its efficiency by excluding potassium tellurite, which inhibits the growth of R. equi from its original composition. Hereafter, the modified medium is referred to as NANC. The composition of NANC medium is as follows: 30 g of tryptone soya broth(Oxoid), 1 g of yeast extract(Oxoid), 15g of bacto-agar(Difco) and 1,000 ml of distilled water with an addition of 10.0 μg/ml of nalidixic acid, 12.5 μg/ml of novobiocine and 20.0 μg/ml of cycloheximide. The inocuiated plates were incubated in aerobic condition at 37℃ for 40 hours. R. equi could be recognized as an isolated colony showing mucous and slimy character on NANC medium with some other bacteria. The selective isolation of R. equi in NANC medium was made by quantitative culture of the organism in the feces. The appearance of R. equi in the feces was noted in all the 91 mares and 36 foals investigated, showing a 100% positive isolation rate. The mean viable count of R. equi organisms in 1 gram of feces was 8.42 x 10^2 CFU in the mares and 7.57 x 10^2 CFU in the foals. No statistically significant difference was found between the mares and foals in the number of colonies isolated from the feces (P>0.05). On the other hand, 5 apparently healthy mares were examined quantitatively for the presence of R. equi in the feces during a period from January to July, 1980. The monthly incidence of the organism in the feces was fairly constant during the experimental period. No seasonal variation was found in any mare. These results indicate that R. equi is a member of the normal intestinal flora in the horse.2. Physiological and biochemical characteristics of R. equi. R. equi has been isolated not only from the lesions of foals but also from the feces of healthy horses. It is impossible to neglect the presence of the organism in the feces of horses in R. equi infiection. Therefore, a question was raised whether the organism isolated from the feces were the same as that isolated from the lesions or not. Then, an attempt was made to discriminate both isolates from each other by using the standard biochemical tests and the API ZYM system. A total of 80 isolates derived from both groups examined had almost the same physiological and biochemical characteristics as 8 reference strains of R. equi supplied by the ATCC and NCTC. That is, in the standard biochemical tests, they were positive for Gram staining, Kinyoun's acid-fast staining, catalase, urease, and the reduction of nitrate and tellurite, but negative for the fermentation of any sugar. When they were subjected to the API ZYM system to examine the activity of 19 bacterial enzymes, six enzymes, esterase-lipase, leucine arylamidase, valine arylamidase, phosphatase acid, phosphoamidase, and α-glucosidase, were detected from them, as well as the reference strains. The results obtained indicate that there was no clear difference in physiological or biochemical characteristics or enzyme profiles between the fecal and clinical isolates.3. Serogrouping of R. equi.a. Establishment of a serogrouping method for R. equi. The serological relationship of 27 isolates of R. equi selected from a total of 1,195 isolates was investigated by cross-agglutination and absorption tests. The presence of a capsular material was demonstrated in all the 27 isolates by electron microscopic observation. Antisera were prepared by employing formalized antigen of each isolate. In the cross-agglutination test with formalized antigen, l3 antisera reacted with homologous antigens alone, but the remaining 14 antisera not only with homologous antigens but also with 1 to 4 heterologous antigens. In the cross-agglutination test with autoclaved antigen, all the antisera reacted not only with homologous antigens but also with 1 to 8 heterologous antigens, except one which reacted with homologous antigen alone. Like this, the strains tended to remove their type or group specific antigens after treatment by autoclaving. It was proved that formalized antigen was more suitable for serogrouping than the autoclaved one. On the other hand, when 14 antisera possessing heterologous agglutinins to several formalized antigens were absorbed with each of the cross-reacting ones, 14 specific antisera were obtained. The cross-agglutination test with these 27 antisera revealed that the 27 strains examined were serologically distinct from one another. These strains were designated serogroups 1 to 27, respectively. Thus the same number of grouping antisera was prepared. In the present study, serogrouping was made by the slide agglutination test. The test was performed on a glass slide with grouping antiserum diluted 1:4 to 1:10. For it, formalized antigen was adjusted to the density of McFarland opacity tube No. 10. It was proved that this test was a simple and rapid one, yielding the same results as the tube agglutination test.b. Serogroups of R. equi derived from feces and lesions. Serogrouping of a total of 1,195 isolates from horses was performed with the 27 grouping antisera. There was no tendency for these isolates to show a cross-reaction to one another. All the isolates could be divided into groups. Of them, 821 isolates were derived from the feces of healthy horses. Of them, 204 belonged to serogroup 4, 107 to 2, 93 to 11, 82 to 3, 59 to 15, 42 to 8, 36 to 7, 35 to 1, and 34 to 14. The remaining 129 isolates belonged to the other 18 serogroups. On the other hand, 374 isolates were derived from the lesions of diseased foals. Of them, 122 isolates belonged to serogroup 4, 112 to 2, 89 to 8, 16 to 11, 13 to 9, 10 to 3, 6 to Z, 4 to 5, 1 to 6, and 1 to 7. It should be noted that serogroups 1, 2, 3, 4, 7, 8, and 11 were found in common to both groups of isolates. This result indicates that no separation can be made between the fecal and clinical isolates on the basis of serological properties; that is, both groups of isolates may be closely related to each other.c. Relationship between Prescott's serovars and the author's serogroups. Prescott studied 97 strains derived from horses, cattle, pigs, dogs, cats and human beings and divided them into 7 serovars. So, an attempt was made to elucidate the serological relationships between Prescott's serovars and the serogroups designated by the author. As a result, a close antigenic relationship existed between Prescott's serovars 1, 2, 3, 4, 5, 6, and 7 and the author's serogroups 4, 16, 2, 12, 21, 1, and 9, respectively. Likewise, serogroups of the eight reference strains received from ATCC and NCTC were also determined by the slide agglutination test. From these results, it is considered that the serogrouping scheme established by the author is useful for the determination of serogroups of isolates from human beings and various animals, and that it may be a useful tool for epizootiological studies on R. equi infections in animals.4. Virulence of R. equi. A study was conducted to clarify the relationship between the virulence of R. equi for mice and the ability of the organism to multiply in vivo, or its resistance to intracelluar killing by peritoneal macrophages and monocytes in vitro. Comparison was made on the virulence of R. equi for mice between strains by calculating LD_50 value. The virulence of R. equi for mice differed from one strain to another. The LD_50 of the least virulent strain exceeded 10^8 CFU, whereas those of moderately and the most highly virulent strains were 10^7 and 10^6 CFU, respectively. For example, the LD_50 of strain NCTC 1621 exceeded 10^8 CFU, indicating that the strain was avirulent for mice, and that of strain CE220 was 10^6 CFU, indicating that the strain was the most virulent. So far as the virulence for mice is concerned, more of virulent strains were found among the clinical isolates than among the fecal ones (P<0.01). So, multiplication in mice was compared between virulent strain CE220 and avirulent strain NCTC 1621 by examining curves of growth in vivo. Histopathological examination revealed that R. equi was phagocytosed by macrophages of the reticuloendothelial system in the spleen and liver. Then, the number of viable organisms in the spleen was counted. An apparent difference was noticed in the number of organisms and bacterial retention in vivo between the two inoculated groups. That is, the organisms were isoiated continually from mice inoculated with strain CE220 in the order of more than 10^4 CFU per spleen for as long as 14 days. On the other hand, strain NCTC 1621 was rapidly eliminated from the spleen. It disappeared from this organ within 7 days after inoculation. The result of this study indicate that there was a close correlation between the virulence of R. equi for mice and its ability to multiply in vivo. The interaction between R. equi and mouse peritoneal macrophages or equine monocytes was further investigated to clarify the difference between virulent and avirulent strains in vitro. There was no significant difference in the rate of phagocytosis between both strains. On the other hand, the survival rate of R. equi organisms against intracellular killing action of cultured mouse peritoneal macrophages at 24 hours of incubation was 226.8 % for virulent strain CE220 and 44.8 % for avirulent strain NCTC 1621. The mean rate of organisms surviving within equine monocytes at 72 hours of incubation was 226.8 % for CE220 and 0.48 % for NCTC 1621. From the results obtained it was suggested that the ability of R. equi to multiply within macrophages might be dependent on the virulence of this organism.

0アクセス

各種コード

  • NII論文ID(NAID)
    500000036322
  • NII著者ID(NRID)
    • 8000000036384
  • 本文言語コード
    • jpn
  • NDL書誌ID
    • 000000200636
  • データ提供元
    • 機関リポジトリ
    • NDL-OPAC
ページトップへ