Charge transport and water oxidation catalysis in heterogeneous matrix toward construction of artificial photosynthetic system 人工光合成系構築のための不均一相電荷移動および水の酸化触媒系

Search this Article

Author

    • 八木, 政行 ヤギ, マサユキ

Bibliographic Information

Title

Charge transport and water oxidation catalysis in heterogeneous matrix toward construction of artificial photosynthetic system

Other Title

人工光合成系構築のための不均一相電荷移動および水の酸化触媒系

Author

八木, 政行

Author(Another name)

ヤギ, マサユキ

University

埼玉大学

Types of degree

博士 (工学)

Grant ID

甲第123号

Degree year

1996-03-25

Note and Description

博士論文

Table of Contents

  1. CONTENTS / (0003.jp2)
  2. Chapter1 Introduction / p1 (0006.jp2)
  3. 1.1 Energy and material cycles in nature / p1 (0006.jp2)
  4. 1.2 Photosynthesis of green plant / p2 (0007.jp2)
  5. 1.3 Design of artificial photosynthetic system / p4 (0008.jp2)
  6. 1.4 Objective of the present study / p5 (0008.jp2)
  7. References / p6 (0009.jp2)
  8. Part I Charge transport in a thin-layer polymer membrane incorporating metal complexes / (0009.jp2)
  9. Chapter2 Analysis of charge transfer distance between tris(2,2'-bipyridine)ruthenium(II)complexes dispersed in a Nafion mem-brane as studied by in-situ spectrocyclic voltammetry(SCV) / p9 (0010.jp2)
  10. 2.1 Introduction / p9 (0010.jp2)
  11. 2.2 Experimental / p10 (0011.jp2)
  12. 2.3 In-situ spectrocyclic voltammogram of an ITO electrode coated with a Nafion membrane incorporating Ru(bpy)₃²⁺ / p11 (0011.jp2)
  13. 2.4 Dependence of [化学式] on the concentration in the membrane / p14 (0013.jp2)
  14. 2.5 Dependence of [化学式] on the scan rate for SCV measurements / p15 (0013.jp2)
  15. 2.6 Charge transfer distance analysis based on intermolecular distance distribution / p16 (0014.jp2)
  16. 2.7 Charge transfer distance between Ru(bpy)₃²⁺ complexes in a Nafion membrane / p18 (0015.jp2)
  17. 2.8 Conclusion / p19 (0015.jp2)
  18. References / p19 (0015.jp2)
  19. Chapter3 Charge transfer distance between tris(2,2'-bipyridine)-ruthenium(II)complexes localized in a Nafion membrane / p21 (0016.jp2)
  20. 3.1 Introduction / p21 (0016.jp2)
  21. 3.2 Experimental / p22 (0017.jp2)
  22. 3.3 In-situ spectrocyclic voltammogram and charge transfer distance / p24 (0018.jp2)
  23. 3.4 Photoluminescent character of Ru(bpy)₃²⁺ incorporated in a Nafion membrane / p28 (0020.jp2)
  24. 3.5 Localization degree of Ru(bpy)₃²⁺ in a Nafion membrane / p30 (0021.jp2)
  25. 3.6 Conclusion / p33 (0022.jp2)
  26. References / p34 (0023.jp2)
  27. Chapter4 Charge transfer distance between trinuclear ruthenium complexes incorporated in a Nafion membrane as studied by potential-step chronoamperospectrometry / p35 (0023.jp2)
  28. 4.1 Introduction / p35 (0023.jp2)
  29. 4.2 Experimental / p36 (0024.jp2)
  30. 4.3 In-situ absorption spectral change of an ITO electrode coated by a Nafion membrane incorporating Ru-red / p37 (0024.jp2)
  31. 4.4 Charge transport kinetics analysis in a Nafion[Ru-red] system / p39 (0025.jp2)
  32. 4.5 Charge transport kinetics analysis in a Nafion〔Ru(bpy)₃²⁺〕system / p40 (0026.jp2)
  33. 4.6 Charge transfer distance analysis between Ru-red complexes in a Nafion membrane / p42 (0027.jp2)
  34. 4.7 Conclusion / p45 (0028.jp2)
  35. References / p46 (0029.jp2)
  36. Part II Water oxidation catalysts in heterogeneous matrixes as photosynthetic oxygen evolving center models / (0029.jp2)
  37. Chapter5 Chemical water oxidation catalysis by a trinuclear ruthenium complex incorporated in a Nafion membrane / p49 (0030.jp2)
  38. 5.1 Introduction / p49 (0030.jp2)
  39. 5.2 Experimental / p50 (0031.jp2)
  40. 5.3 Mechanism and kinetic of O₂ evolution / p51 (0031.jp2)
  41. 5.4 Activity of the catalyst / p53 (0032.jp2)
  42. 5.5 Comparison of the catalyst activities between the AS and HM / p56 (0034.jp2)
  43. 5.6 Activity analysis of the catalyst in a Nafion membrane / p58 (0035.jp2)
  44. 5.7 Conclusion / p61 (0036.jp2)
  45. References / p62 (0037.jp2)
  46. Chapter6 Electrochemical water oxidation catalysis by a trinuclear ruthe-nium complex incorporated in a Nafion membrane / p65 (0038.jp2)
  47. 6.1 Introduction / p65 (0038.jp2)
  48. 6.2 Experimental / p66 (0039.jp2)
  49. 6.3 Dependence of the electrochemical catalyst activity on applied potential / p67 (0039.jp2)
  50. 6.4 Dependence of the electrochemical catalyst activity on the concentration / p68 (0040.jp2)
  51. 6.5 Activity analysis of the electrochemical catalyst in a Nafion membrane / p70 (0041.jp2)
  52. 6.6 Conclusion / p72 (0042.jp2)
  53. References / p72 (0042.jp2)
  54. Chapter7 Charge mediation effect of amino acid residue model in electro-chemical water oxidation catalysis / p75 (0043.jp2)
  55. 7.1 Introduction / p75 (0043.jp2)
  56. 7.2 Experimental / p76 (0044.jp2)
  57. 7.3 Catalyst activity in the absence of a amino acid residue model / p77 (0044.jp2)
  58. 7.4 Catalyst activity in the presence of a amino acid residue model / p77 (0044.jp2)
  59. 7.5 Activity analysis of the electrochemical catalyst in a Nafion membrane / p79 (0045.jp2)
  60. 7.6 Conclusion / p83 (0047.jp2)
  61. References / p83 (0047.jp2)
  62. Chapter8 Water oxidation catalysis by a trinuclear ruthenium complex adsorbed on platinum black particles / p85 (0048.jp2)
  63. 8.1 Introduction / p85 (0048.jp2)
  64. 8.2 Experimental / p86 (0049.jp2)
  65. 8.3 Electrochemical character of an electrode coated with deposited platinum black adsorbing Ru-red / p88 (0050.jp2)
  66. 8.4 Activity of the catalyst adsorbed on electrodeposited platinum black / p89 (0050.jp2)
  67. 8.5 Activities of various molecule-based catalysts adsorbed on platinum black / p91 (0051.jp2)
  68. 8.6 The mechanism of the high activity / p93 (0052.jp2)
  69. 8.7 Dependencies of the amount of O₂ evolved on platinum black and Ru-red amounts / p94 (0053.jp2)
  70. 8.8 Activity analysis of the catalyst on platinum black / p97 (0054.jp2)
  71. 8.9 Conclusion / p102 (0057.jp2)
  72. References / p102 (0057.jp2)
  73. Chapter9 Water oxidation catalysis by a mononuclear ruthenium complex incorporated in a Nafion membrane / p105 (0058.jp2)
  74. 9.1 Introduction / p105 (0058.jp2)
  75. 9.2 Experimental / p106 (0059.jp2)
  76. 9.3 Comparison of the catalyst activity between AS and HM / p107 (0059.jp2)
  77. 9.4 Activity analysis of the catalyst in a Nafion membrane / p110 (0061.jp2)
  78. 9.5 Effect of immobilization of the catalyst to the membrane on cooperative catalysis / p113 (0062.jp2)
  79. 9.6 Conclusion / p114 (0063.jp2)
  80. References / p115 (0063.jp2)
  81. Part III Designs of artificial Photosystem II models / (0064.jp2)
  82. Chapter1O Photosensitizer/heterogeneous water oxidation catalyst Multi-layered system / p119 (0065.jp2)
  83. 10.1 Introduction / p119 (0065.jp2)
  84. 10.2 Experimental / p119 (0065.jp2)
  85. 10.3 Photocurrent characteristics of the multi-layered electrode / p120 (0066.jp2)
  86. 10.4 Photoelectrolysis of water using the multi-layered electrode / p121 (0066.jp2)
  87. 10.5 The mechanism of O2 evolution indeuced by visible light / p122 (0067.jp2)
  88. References / p122 (0067.jp2)
  89. Chapter11 Concluding remarks / p123 (0067.jp2)
  90. 1)Charge transport in a thin-layer polymer membrane incorporating metal complexes / p123 (0067.jp2)
  91. 2)Water oxidation catalysis in heterogeneous matrixes as atrtificial photosynthetic oxygen evolving center models / p123 (0067.jp2)
  92. 3)Dsign of artificial photosynthetic models / p125 (0068.jp2)
  93. Acknowledgments / p127 (0069.jp2)
  94. Publication lists / (0070.jp2)
10access

Codes

  • NII Article ID (NAID)
    500000133895
  • NII Author ID (NRID)
    • 8000000973091
  • DOI(NDL)
  • NDLBibID
    • 000000298209
  • Source
    • NDL ONLINE
    • NDL Digital Collections
Page Top