【12/14(木)17時より】CiNiiの常時SSL化(HTTPS接続)について

An inductive learning approach for adaptive problem solving 帰納学習による適応型問題解決

この論文をさがす

著者

    • 中莖, 洋一郎 ナカクキ, ヨウイチロウ

書誌事項

タイトル

An inductive learning approach for adaptive problem solving

タイトル別名

帰納学習による適応型問題解決

著者名

中莖, 洋一郎

著者別名

ナカクキ, ヨウイチロウ

学位授与大学

東京工業大学

取得学位

博士 (工学)

学位授与番号

乙第2949号

学位授与年月日

1996-09-30

注記・抄録

博士論文

目次

  1. 論文目録 / (0002.jp2)
  2. Abstract / (0004.jp2)
  3. Contents / p1 (0006.jp2)
  4. 1 Introduction / p1 (0008.jp2)
  5. 2 Learning Meta-Rules for A Circuit Block Classification System / p8 (0012.jp2)
  6. 2.1 Introduction / p8 (0012.jp2)
  7. 2.2 The Circuit Block Selecting Problem / p10 (0013.jp2)
  8. 2.3 Reasoning with Meta-rules / p12 (0014.jp2)
  9. 2.4 Knowledge Acquisition / p16 (0016.jp2)
  10. 2.5 Experimental Results / p21 (0018.jp2)
  11. 2.6 Conclusions / p21 (0018.jp2)
  12. 3 Learning Fault Probability Distribution for Model-Based Diagnosis / p22 (0019.jp2)
  13. 3.1 Introduction / p23 (0019.jp2)
  14. 3.2 An Experimental Model-Based Diagnostic System / p26 (0021.jp2)
  15. 3.3 Learning Probabilistic Models / p32 (0024.jp2)
  16. 3.4 Presumption tree / p37 (0026.jp2)
  17. 3.5 Model selection with MDL criterion / p40 (0028.jp2)
  18. 3.6 Application to Model-Based Diagnosis and Experimental Results / p43 (0029.jp2)
  19. 3.7 Conclusion / p46 (0031.jp2)
  20. 4 Parallel Algorithm to Learn Fault Probability Distribution / p48 (0032.jp2)
  21. 4.1 Introduction / p49 (0032.jp2)
  22. 4.2 A Parallel Learning Algorithm / p49 (0032.jp2)
  23. 4.3 Implementation and Results / p58 (0037.jp2)
  24. 4.4 Conclusion / p62 (0039.jp2)
  25. 5 Adaptive Model-Based Diagnosis / p63 (0039.jp2)
  26. 5.1 Introduction / p64 (0040.jp2)
  27. 5.2 Diagnosis with Hierarchical Models / p65 (0040.jp2)
  28. 5.3 Model Diagnosability Criterion / p71 (0043.jp2)
  29. 5.4 Adaptive Diagnosis Mechanism / p75 (0045.jp2)
  30. 5.5 Conclusion / p82 (0049.jp2)
  31. 6 Learning to Recognize(Un)promising Runs in Simulated Annealing Search / p85 (0050.jp2)
  32. 6.1 Introduction / p86 (0051.jp2)
  33. 6.2 Simulated Annealing Search / p88 (0052.jp2)
  34. 6.3 Job Shop Scheduling by Simulated Annealing / p91 (0053.jp2)
  35. 6.4 Learning To Recognize(Un)Promising SA Runs / p97 (0056.jp2)
  36. 6.5 A Cutoff Criterion / p99 (0057.jp2)
  37. 6.6 Three Restart Criteria / p101 (0058.jp2)
  38. 6.7 Performance Evaluation / p105 (0060.jp2)
  39. 6.8 Conclusion / p110 (0063.jp2)
  40. 7 Conclusion / p111 (0063.jp2)
  41. Appendix A / p115 (0065.jp2)
  42. Appendix B / p117 (0066.jp2)
  43. Appendix C / p120 (0068.jp2)
  44. Bibliography / p125 (0070.jp2)
1アクセス

各種コード

  • NII論文ID(NAID)
    500000153819
  • NII著者ID(NRID)
    • 8000001092833
  • DOI(NDL)
  • NDL書誌ID
    • 000000318133
  • データ提供元
    • NDL-OPAC
    • NDLデジタルコレクション
ページトップへ