Dynamical behavior and quantum fluctuations of the nonlinear solitary waves in mode-locked lasers and optical fibers モード同期レーザ及び光ファイバにおける非線形孤立波の動的振る舞いと量子揺らぎ

この論文をさがす

著者

    • 並木, 周 ナミキ, シュウ

書誌事項

タイトル

Dynamical behavior and quantum fluctuations of the nonlinear solitary waves in mode-locked lasers and optical fibers

タイトル別名

モード同期レーザ及び光ファイバにおける非線形孤立波の動的振る舞いと量子揺らぎ

著者名

並木, 周

著者別名

ナミキ, シュウ

学位授与大学

早稲田大学

取得学位

博士 (理学)

学位授与番号

乙第1363号

学位授与年月日

1998-03-05

注記・抄録

博士論文

資料形態 : テキストデータ プレーンテキスト

コレクション : 国立国会図書館デジタルコレクション > デジタル化資料 > 博士論文

制度:新 ; 文部省報告番号:乙1363号 ; 学位の種類:博士(理学) ; 授与年月日:1998/3/5 ; 早大学位記番号:新2638 ; 理工学図書館請求番号:2234

本文PDFは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルをPDFに変換したものである。

text

目次

  1. Abstract
  2. Contents
  3. Acknowledgments
  4. List of Figures
  5. List of Tables
  6. Chapter1 Introduction
  7. §1.1 A historical overview on the optical communications
  8. §1.2 Commercialization of erbium doped fiber amplifiers
  9. §1.3 Optical soliton transmission
  10. §1.4 Novel nonlinear solitary wave transmissions
  11. §1.5 Studies on mode-locked fiber lasers
  12. §1.6 Squeezing in optical fibers
  13. §1.7 Applications of nonlinear solitary waves
  14. §1.8 Objectives and organization of the thesis
  15. Chapter2 Wave Propagation and Mode-locking in Fibers
  16. §2.1 Linear propagation equation
  17. §2.2 Nonlinear Schrödinger equation (NLSE)
  18. §2.3 Theory of passive mode-locking:Haus's master equation
  19. §2.4 Master equation for the stretched pulse laser
  20. §2.5 Polarization additive pulse mode-locking and fiber lasers
  21. §2.5.1 Basic scheme and the matrix representation
  22. §2.5.2 P-APM in the stretched pulse laser
  23. §2.5.3 P-APM soliton and stretched pulse fiber lasers
  24. Chapter3 Energy Rate Equations for Passive Mode-locking
  25. §3.1 Formulations
  26. §3.2 Dynamics
  27. §3.2.1 Self-starting
  28. §3.2.2 Steady state operation
  29. §3.2.3 Stability
  30. §3.2.4 Net gain curves
  31. §3.2.5 Quantization effect of pulse, and hybrid state of CW and pulse operation
  32. §3.2.6 Multiple pulse operation
  33. §3.2.7 Noise
  34. §3.2.8 Mode-locking conditions
  35. §3.3 Nonlinear rate equations
  36. §3.3.1 The soliton regime
  37. §3.3.2 The stretched pulse regime
  38. §3.4 Discussions
  39. §3.5 Conclusions
  40. Chapter4 Noise,CW,and Relaxation Oscillations in Mode-locked Fiber Lasers
  41. §4.1 Von der Linde's phenomenological theory
  42. §4.2 Noise measurement
  43. §4.3 Relaxation oscillations
  44. §4.4 Effects of spectral sidebands and CW
  45. §4.5 Conclusions
  46. Chapter5 Perturbation Theory of The Master Equations
  47. §5.1 Haus-Mecozzi's noise theory for the soliton laser
  48. §5.1.1 Soliton perturbation theory
  49. §5.1.2 Quantum noise spectra
  50. §5.1.3 Conclusions
  51. §5.2 Noise theory for the stretched pulse
  52. §5.2.1 Perturbation of the steady state pulse
  53. §5.2.2 The full perturbation analysis
  54. §5.2.3 Continuum generation
  55. §5.2.4 An adiabatic perturbation
  56. §5.2.5 Quantum noise spectra
  57. §5.2.6 Conclusions
  58. §5.3 Notes on the stretched pulse communications
  59. Chapter6 Observation of Quantum Timing Jitter in Fiber Lasers
  60. §6.1 Soliton laser
  61. §6.1.1 Experimental setup
  62. §6.1.2 Experimental results and analysis
  63. §6.1.3 Comparison between theory and experiment
  64. §6.1.4 Conclusion
  65. §6.2 Stretched pulse laser
  66. §6.2.1 Experimental setup and procedure
  67. §6.2.2 Experimental results
  68. §6.2.3 Comparison between theory and experiment
  69. §6.2.4 Conclusions
  70. Chapter7 Squeezing in Fibers and Imbalance of Sagnac Squeezer
  71. §7.1 Background
  72. §7.1.1 Field quantization
  73. §7.1.2 Coherent state
  74. §7.1.3 Squeezed state
  75. §7.1.4 Balanced homodyne detection
  76. §7.1.5 Quantization of nonlinear solitary waves in optical fibers
  77. §7.1.6 Nonlinear Mach-Zehnder interferometer as a squeezer:ideal case
  78. §7.1.7 Soliton squeezing
  79. §7.1.8 Guided acoustic wave Brillouin scattering (GAWBS)
  80. §7.2 Linearized theory of Sagnac squeezers with imbalance
  81. §7.2.1 Squeezer with imbalance
  82. §7.2.2 Squeezed signal
  83. §7.2.3 Pump leakage due to imbalance
  84. §7.2.4 Pump soliton leakage due to GVD effect
  85. §7.2.5 Detection of the leakage due to GVD effect
  86. §7.2.6 Delay tolerance
  87. §7.3 Effect of Raman frequency down-shift on squeezing
  88. §7.4 Summary and comments
  89. Chapter8 Concluding Remarks
  90. §8.1 Results of this thesis
  91. §8.2 Future directions
  92. References
  93. Curriculum Vitae
12アクセス

各種コード

  • NII論文ID(NAID)
    500002072156
  • NII著者ID(NRID)
    • 8000002636198
  • DOI(NDL)
  • 本文言語コード
    • eng
  • NDL書誌ID
    • 000000321973
  • データ提供元
    • 機関リポジトリ
    • NDL ONLINE
    • NDLデジタルコレクション
ページトップへ