Decreased Hippocampal Inhibition and a Selective Loss of Interneurons in Experimental Epilepsy

  • Robert S. Sloviter
    Neurology Research Center, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, NY 10993, and the Departments of Pharmacology and Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032.

抄録

<jats:p>The occurrence of seizure activity in human temporal lobe epilepsy or status epilepticus is often associated with a characteristic pattern of cell loss in the hippocampus. An experimental model that replicates this pattern of damage in normal animals by electrical stimulation of the afferent pathway to the hippocampus was developed to study changes in structure and function that occur as a result of repetitive seizures. Hippocampal granule cell seizure activity caused a persistent loss of recurrent inhibition and irreversibly damaged adjacent interneurons. Immunocytochemical staining revealed unexpectedly that γ-aminobutyric acid (GABA)-containing neurons, thought to mediate inhibition in this region and predicted to be damaged by seizures, had survived. In contrast, there was a nearly complete loss of adjacent somatostatin-containing interneurons and mossy cells that may normally activate inhibitory neurons. These results suggest that the seizure-induced loss of a basket cell-activating system, rather than a loss of inhibitory basket cells themselves, may cause disinhibition and thereby play a role in the pathophysiology and pathology of the epileptic state.</jats:p>

収録刊行物

  • Science

    Science 235 (4784), 73-76, 1987-01-02

    American Association for the Advancement of Science (AAAS)

被引用文献 (24)*注記

もっと見る

キーワード

詳細情報 詳細情報について

問題の指摘

ページトップへ