書誌事項

The Couette-Taylor problem

Pascal Chossat, Gérard Iooss

(Applied mathematical sciences, v. 102)

Springer-Verlag, c1994

  • : us
  • : gw
  • : softcover

大学図書館所蔵 件 / 76

この図書・雑誌をさがす

注記

"Softcover reprint of the hardcover 1st edition 1994"--T.p. verso of softcover

Includes bibliographical references (p. [221]-230) and index

内容説明・目次

巻冊次

: us ISBN 9780387941547

内容説明

1. 1 A paradigm About one hundred years ago, Maurice Couette, a French physicist, de signed an apparatus consisting of two coaxial cylinders, the space between the cylinders being filled with a viscous fluid and the outer cylinder being rotated at angular velocity O2. The purpose of this experiment was, follow ing an idea of the Austrian physicist Max Margules, to deduce the viscosity of the fluid from measurements of the torque exerted by the fluid on the inner cylinder (the fluid is assumed to adhere to the walls of the cylinders). At least when O is not too large, the fluid flow is nearly laminar and 2 the method of Couette is valuable because the torque is then proportional to 110 , where II is the kinematic viscosity of the fluid. If, however, O is 2 2 increased to a very large value, the flow becomes eventually turbulent. A few years later, Arnulph Mallock designed a similar apparatus but allowed the inner cylinder to rotate with angular velocity 01, while O2 = o. The surprise was that the laminar flow, now known as the Couette flow, was not observable when 0 exceeded a certain "low" critical value Ole, even 1 though, as we shall see in Chapter II, it is a solution of the model equations for any values of 0 and O .

目次

I Introduction.- I.1 A paradigm.- I.2 Experimental results.- I.3 Modeling for theoretical analysis.- I.4 Arrangements of topics in the text.- II Statement of the Problem and Basic Tools.- II.1 Nondimensionalization, parameters.- II.1.1 Basic formulation.- II.1.2 Nondimensionalization.- II.1.3 Couette flow and the perturbation.- II.1.4 Symmetries.- II.1.5 Small gap case.- II.1.5.1 Case when the average rotation rate is very large versus the difference ?1 - ?2.- II.1.5.2 Case when the rotation rate of the inner cylinder is very large.- II.2 Functional frame and basic properties.- II.2.1 Projection on divergence-free vector fields.- II.2.2 Alternative choice for the functional frame.- II.2.3 Main results for the nonlinear evolution problem.- II.3 Linear stability analysis.- II.4 Center Manifold Theorem.- III Taylor Vortices, Spirals and Ribbons.- III.1 Taylor vortex flow.- III.1.1 Steady-state bifurcation with O(2)-symmetry.- III.1.2 Identification of the coefficients in the amplitude equation.- III.1.3 Geometrical pattern of the Taylor cells.- III.2 Spirals and ribbons.- III.2.1 The Hopf bifurcation with O(2)-symmetry.- III.2.2 Application to the Couette-Taylor problem.- III.2.3 Geometrical structure of the flows.- III.2.3.1 Spirals.- III.2.3.2 Ribbons.- III.3 Higher codimension bifurcations.- III.3.1 Weakly subcritical Taylor vortices.- III.3.2 Competition between spirals and ribbons.- IV Mode Interactions.- IV.1 Interaction between an axisymmetric and a nonaxisymmetric mode.- IV.1.1 The amplitude equations (6 dimensions).- IV.1.2 Restriction of the equations to flow-invariant subspaces.- IV.1.3 Bifurcated solutions.- IV.1.3.1 Primary branches.- IV.1.3.2 Wavy vortices.- IV.1.3.3 Twisted vortices.- IV.1.4 Stability of the bifurcated solutions.- IV.1.4.1 Taylor vortices.- IV.1.4.2 Spirals.- IV.1.4.3 Ribbons.- IV.1.4.4 Wavy vortices.- IV.1.4.5 Twisted vortices.- IV.1.5 A numerical example.- IV.1.6 Bifurcation with higher codimension.- IV.2 Interaction between two nonaxisymmetric modes.- IV.2.1 The amplitude equations (8 dimensions).- IV.2.2 Restriction of the equations to flow-invariant subspaces.- IV.2.3 Bifurcated solutions.- IV.2.3.1 Primary branches.- IV.2.3.2 Interpenetrating spirals (first kind).- IV.2.3.3 Interpenetrating spirals (second kind).- IV.2.3.4 Superposed ribbons (first kind).- IV.2.3.5 Superposed ribbons (second kind).- IV.2.4 Stability of the bifurcated solutions.- IV.2.4.1 Stability of the m-spirals.- IV.2.4.2 Stability of the (m + 1)-spirals.- IV.2.4.3 Stability of the m-ribbons.- IV.2.4.4 Stability of the (m + 1)-ribbons.- IV.2.4.5 Stability of the interpenetrating spirals SI(0,3) and SI(1,2).- IV.2.4.6 Stability of the interpenetrating spirals SI(1,3) and SI(0,2).- IV.2.4.7 Stability of the superposed ribbons RS(0).- IV.2.4.8 Stability of the superposed ribbons RS(?).- IV.2.5 Further bifurcations.- IV.2.6 Two numerical examples.- V Imperfections on Primary Bifurcations.- V.1 General setting when the geometry of boundaries is perturbed.- V.1.1 Reduction to an equation in H(Qh).- V.1.2 Amplitude equations.- V.2 Eccentric cylinders.- V.2.1 Effect on Taylor vortices.- V.2.2 Computation of the coefficient b.- V.2.3 Effect on spirals and ribbons.- V.3 Little additional flux.- V.3.1 Perturbed Taylor vortices lead to traveling waves.- V.3.2 Identification of coefficients d and e.- V.3.3 Effects on spirals and ribbons.- V.4 Periodic modulation of the shape of cylinders in the axial direction.- V.4.1 Effect on Taylor vortices.- V.4.2 Effects on spirals and ribbons.- V.5 Time-periodic perturbation.- V.5.1 Perturbed Taylor vortices.- V.5.2 Perturbation of spirals and ribbons.- VI Bifurcation from Group Orbits of Solutions.- VI.1 Center manifold for group orbits.- VI.1.1 Group orbits of first bifurcating solutions.- VI.1.1.1 Taylor vortex flow.- VI.1.1.2 Spirals.- VI.1.1.3 Ribbons.- VI.1.2 The center manifold reduction for a group-orbit of steady solutions.- VI.2 Bifurcation from the Taylor vortex flow.- VI.2.1 The stationary case.- VI.2.1.1 No symmetry breaking.- VI.2.1.2 Breaking reflectional symmetry creates a traveling wave.- VI.2.1.3 Doubling the axial wave length.- VI.2.1.4 Doubling the axial wave length and breaking reflectional symmetry.- VI.2.2 Hopf bifurcation from Taylor vortices.- VI.3 Bifurcation from the spirals.- VI.4 Bifurcation from ribbons.- VI.4.1 The stationary case.- VI.4.1.1 No symmetry breaking.- VI.4.1.2 Breaking the twist symmetry.- VI.4.1.3 Breaking the reflectional symmetry (stationary bifurcation creating a traveling wave).- VI.4.1.4 Breaking the reflectional and twist symmetries.- VI.4.2 Hopf bifurcation from ribbons.- VI.4.2.1 Breaking the twist symmetry.- VI.4.2.2 Breaking the twist and reflectional symmetries.- VI.5 Bifurcation from wavy vortices, modulated wavy vortices.- VI.5.1 Hopf bifurcation of wavy vortices into modulated wavy vortices.- VI.5.2 Steady bifurcation of the wavy vortices into a quasi-periodic flow with a slow drift.- VI.6 Codimension-two bifurcations from Taylor vortex flow.- VII Large-scale EfTects.- VII. 1 Steady solutions in an infinite cylinder.- VII.1.1 A center manifold for steady Navier-Stokes equations.- VII.1.2 Resolution of the four-dimensional amplitude equations.- VII.1.2.1 The normal form.- VII.1.2.2 Integrability of the reduced system..- VII.1.2.3 Periodic solutions of the amplitude equations.- VII.1.2.4 Other solutions of the amplitude equations.- VII.1.2.5 Quasi-periodic solutions.- VII.1.2.6 Eckhaus points E and E?.- VII.1.2.7 Homoclinic solutions.- VII.2 Time-periodic solutions in an infinite cylinder.- VII.2.1 Center manifold for time-periodic Navier-Stokes equations.- VII.2.2 Spectrum of $$\kappa \mu ,\omega $$ near criticality.- VII.2.3 Resolution of the four-dimensional amplitude equations. New solutions.- VII.3 Ginzburg-Landau equation.- VIII Small Gap Approximation.- VIII.1 Introduction.- VIII.2 Choice of scales and limiting system.- VIII.2.1 Choice of scales.- VIII.2.2 Limiting system.- VIII.3 Linear stability analysis.- VIII.4 Ginzburg-Landau equations.- VIII.4.1 Case (i).- VIII.4.2 Case (ii).- VIII.4.3 Case (iii).
巻冊次

: softcover ISBN 9781461287308

内容説明

1. 1 A paradigm About one hundred years ago, Maurice Couette, a French physicist, de signed an apparatus consisting of two coaxial cylinders, the space between the cylinders being filled with a viscous fluid and the outer cylinder being rotated at angular velocity O2. The purpose of this experiment was, follow ing an idea of the Austrian physicist Max Margules, to deduce the viscosity of the fluid from measurements of the torque exerted by the fluid on the inner cylinder (the fluid is assumed to adhere to the walls of the cylinders). At least when O is not too large, the fluid flow is nearly laminar and 2 the method of Couette is valuable because the torque is then proportional to 110 , where II is the kinematic viscosity of the fluid. If, however, O is 2 2 increased to a very large value, the flow becomes eventually turbulent. A few years later, Arnulph Mallock designed a similar apparatus but allowed the inner cylinder to rotate with angular velocity 01, while O2 = o. The surprise was that the laminar flow, now known as the Couette flow, was not observable when 0 exceeded a certain "low" critical value Ole, even 1 though, as we shall see in Chapter II, it is a solution of the model equations for any values of 0 and O .

目次

I Introduction.- I.1 A paradigm.- I.2 Experimental results.- I.3 Modeling for theoretical analysis.- I.4 Arrangements of topics in the text.- II Statement of the Problem and Basic Tools.- II.1 Nondimensionalization, parameters.- II.1.1 Basic formulation.- II.1.2 Nondimensionalization.- II.1.3 Couette flow and the perturbation.- II.1.4 Symmetries.- II.1.5 Small gap case.- II.1.5.1 Case when the average rotation rate is very large versus the difference ?1 - ?2.- II.1.5.2 Case when the rotation rate of the inner cylinder is very large.- II.2 Functional frame and basic properties.- II.2.1 Projection on divergence-free vector fields.- II.2.2 Alternative choice for the functional frame.- II.2.3 Main results for the nonlinear evolution problem.- II.3 Linear stability analysis.- II.4 Center Manifold Theorem.- III Taylor Vortices, Spirals and Ribbons.- III.1 Taylor vortex flow.- III.1.1 Steady-state bifurcation with O(2)-symmetry.- III.1.2 Identification of the coefficients in the amplitude equation.- III.1.3 Geometrical pattern of the Taylor cells.- III.2 Spirals and ribbons.- III.2.1 The Hopf bifurcation with O(2)-symmetry.- III.2.2 Application to the Couette-Taylor problem.- III.2.3 Geometrical structure of the flows.- III.2.3.1 Spirals.- III.2.3.2 Ribbons.- III.3 Higher codimension bifurcations.- III.3.1 Weakly subcritical Taylor vortices.- III.3.2 Competition between spirals and ribbons.- IV Mode Interactions.- IV.1 Interaction between an axisymmetric and a nonaxisymmetric mode.- IV.1.1 The amplitude equations (6 dimensions).- IV.1.2 Restriction of the equations to flow-invariant subspaces.- IV.1.3 Bifurcated solutions.- IV.1.3.1 Primary branches.- IV.1.3.2 Wavy vortices.- IV.1.3.3 Twisted vortices.- IV.1.4 Stability of the bifurcated solutions.- IV.1.4.1 Taylor vortices.- IV.1.4.2 Spirals.- IV.1.4.3 Ribbons.- IV.1.4.4 Wavy vortices.- IV.1.4.5 Twisted vortices.- IV.1.5 A numerical example.- IV.1.6 Bifurcation with higher codimension.- IV.2 Interaction between two nonaxisymmetric modes.- IV.2.1 The amplitude equations (8 dimensions).- IV.2.2 Restriction of the equations to flow-invariant subspaces.- IV.2.3 Bifurcated solutions.- IV.2.3.1 Primary branches.- IV.2.3.2 Interpenetrating spirals (first kind).- IV.2.3.3 Interpenetrating spirals (second kind).- IV.2.3.4 Superposed ribbons (first kind).- IV.2.3.5 Superposed ribbons (second kind).- IV.2.4 Stability of the bifurcated solutions.- IV.2.4.1 Stability of the m-spirals.- IV.2.4.2 Stability of the (m + 1)-spirals.- IV.2.4.3 Stability of the m-ribbons.- IV.2.4.4 Stability of the (m + 1)-ribbons.- IV.2.4.5 Stability of the interpenetrating spirals SI(0,3) and SI(1,2).- IV.2.4.6 Stability of the interpenetrating spirals SI(1,3) and SI(0,2).- IV.2.4.7 Stability of the superposed ribbons RS(0).- IV.2.4.8 Stability of the superposed ribbons RS(?).- IV.2.5 Further bifurcations.- IV.2.6 Two numerical examples.- V Imperfections on Primary Bifurcations.- V.1 General setting when the geometry of boundaries is perturbed.- V.1.1 Reduction to an equation in H(Qh).- V.1.2 Amplitude equations.- V.2 Eccentric cylinders.- V.2.1 Effect on Taylor vortices.- V.2.2 Computation of the coefficient b.- V.2.3 Effect on spirals and ribbons.- V.3 Little additional flux.- V.3.1 Perturbed Taylor vortices lead to traveling waves.- V.3.2 Identification of coefficients d and e.- V.3.3 Effects on spirals and ribbons.- V.4 Periodic modulation of the shape of cylinders in the axial direction.- V.4.1 Effect on Taylor vortices.- V.4.2 Effects on spirals and ribbons.- V.5 Time-periodic perturbation.- V.5.1 Perturbed Taylor vortices.- V.5.2 Perturbation of spirals and ribbons.- VI Bifurcation from Group Orbits of Solutions.- VI.1 Center manifold for group orbits.- VI.1.1 Group orbits of first bifurcating solutions.- VI.1.1.1 Taylor vortex flow.- VI.1.1.2 Spirals.- VI.1.1.3 Ribbons.- VI.1.2 The center manifold reduction for a group-orbit of steady solutions.- VI.2 Bifurcation from the Taylor vortex flow.- VI.2.1 The stationary case.- VI.2.1.1 No symmetry breaking.- VI.2.1.2 Breaking reflectional symmetry creates a traveling wave.- VI.2.1.3 Doubling the axial wave length.- VI.2.1.4 Doubling the axial wave length and breaking reflectional symmetry.- VI.2.2 Hopf bifurcation from Taylor vortices.- VI.3 Bifurcation from the spirals.- VI.4 Bifurcation from ribbons.- VI.4.1 The stationary case.- VI.4.1.1 No symmetry breaking.- VI.4.1.2 Breaking the twist symmetry.- VI.4.1.3 Breaking the reflectional symmetry (stationary bifurcation creating a traveling wave).- VI.4.1.4 Breaking the reflectional and twist symmetries.- VI.4.2 Hopf bifurcation from ribbons.- VI.4.2.1 Breaking the twist symmetry.- VI.4.2.2 Breaking the twist and reflectional symmetries.- VI.5 Bifurcation from wavy vortices, modulated wavy vortices.- VI.5.1 Hopf bifurcation of wavy vortices into modulated wavy vortices.- VI.5.2 Steady bifurcation of the wavy vortices into a quasi-periodic flow with a slow drift.- VI.6 Codimension-two bifurcations from Taylor vortex flow.- VII Large-scale EfTects.- VII. 1 Steady solutions in an infinite cylinder.- VII.1.1 A center manifold for steady Navier-Stokes equations.- VII.1.2 Resolution of the four-dimensional amplitude equations.- VII.1.2.1 The normal form.- VII.1.2.2 Integrability of the reduced system..- VII.1.2.3 Periodic solutions of the amplitude equations.- VII.1.2.4 Other solutions of the amplitude equations.- VII.1.2.5 Quasi-periodic solutions.- VII.1.2.6 Eckhaus points E and E?.- VII.1.2.7 Homoclinic solutions.- VII.2 Time-periodic solutions in an infinite cylinder.- VII.2.1 Center manifold for time-periodic Navier-Stokes equations.- VII.2.2 Spectrum of $$\kappa \mu ,\omega $$ near criticality.- VII.2.3 Resolution of the four-dimensional amplitude equations. New solutions.- VII.3 Ginzburg-Landau equation.- VIII Small Gap Approximation.- VIII.1 Introduction.- VIII.2 Choice of scales and limiting system.- VIII.2.1 Choice of scales.- VIII.2.2 Limiting system.- VIII.3 Linear stability analysis.- VIII.4 Ginzburg-Landau equations.- VIII.4.1 Case (i).- VIII.4.2 Case (ii).- VIII.4.3 Case (iii).
巻冊次

: gw ISBN 9783540941545

内容説明

This monograph presents a systematic and unified approach to the non-linear stability problem and transitions in the Couette-Taylor problem, by the means of analytic and constructive methods. The most "elementary" one-parameter theory is first presented. More complex situations are then analyzed (mode interactions, imperfections, non-spatially periodic patterns). The whole analysis is based on the mathematically rigorous theory of centre manifold and normal forms, and symmetries are fully taken into account. These methods are very general and can be applied to other hydrodynamical instabilities, or more generally to physical problems modelled by partial differential equations.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA22463028
  • ISBN
    • 0387941541
    • 3540941541
    • 9781461287308
  • LCCN
    93021048
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    New York
  • ページ数/冊数
    ix, 233 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ