The Monster and Lie algebras : proceedings of a special research quarter at the Ohio State University, May, 1996

書誌事項

The Monster and Lie algebras : proceedings of a special research quarter at the Ohio State University, May, 1996

editor, J. Ferrar, K. Harada

(Ohio State University Mathematical Research Institute publications, 7)

Walter de Gruyter, 1998

大学図書館所蔵 件 / 28

この図書・雑誌をさがす

注記

Includes bibliographical references

内容説明・目次

内容説明

This work presents the proceedings of the 2nd Columbus Monster Conference, held in Ohio in 1996. The papers discuss the various aspects of group theory and Lie algebra theory with the monster group as the underlying central subject. Topics covered include vertex operator algebras and the application in conformal field theory and elliptical cohomology, the net group, modular Lie algebras, affine Lie algebras, quantum groups, and applications of Hopf algebras in the study of Lie algebras.

目次

  • Part 1 The Monster: vertex operators in algebraic topology, A. Baker
  • the radical of a vertex operator algebra, Ch. Dong et al
  • associative subalgebras of the Griess algebra and related topics, Ch. Dong et al
  • a vertex operator algebra related to E8 with automorphism group O+(10,2), R.L. Griess Jr.
  • modular forms associated with the Monster module, K. Harada, M.L. Lang
  • quilts, the 3-string braid group, and braid actions on finite groups - an introduction, T. Hsu
  • the moonshine VOA and a tensor product of Ising models, M. Miyamoto
  • netting the Monster, S.P. Norton
  • Monster roots, Ch. S. Simons. Part 2 Lie algebras: on graded Lie algebras of characteristic three with classical reductive null component, G. Benkart et al
  • Auslander-Reiten theory for restricted Lie algebras, R. Farnsteiner
  • chief factors and the principals block of a restricted Lie algebra, J. Feldvoss
  • on Drinfeld realization of quantum affine algebras, N. Jing
  • free Lie superalgebras and the generalized Witt formula, S-J. Kang
  • a generalization of the Jordan approach to symmetric Riemannian spaces, I.L. Kantor
  • representation theory of Lie algebras of Cartan type, D.K. Nakano.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ