The volume of convex bodies and Banach space geometry

書誌事項

The volume of convex bodies and Banach space geometry

Gilles Pisier

(Cambridge tracts in mathematics, 94)

Cambridge University Press, 1999

  • : pbk

大学図書館所蔵 件 / 13

この図書・雑誌をさがす

注記

Bibliography: p. 237-248

Includes index

内容説明・目次

内容説明

This book aims to give a self-contained presentation of a number of results, which relate the volume of convex bodies in n-dimensional Euclidean space and the geometry of the corresponding finite-dimensional normed spaces. The methods employ classical ideas from the theory of convex sets, probability theory, approximation theory and the local theory of Banach spaces. The book is in two parts. The first presents self-contained proofs of the quotient of the subspace theorem, the inverse Santalo inequality and the inverse Brunn-Minkowski inequality. The second part gives a detailed exposition of the recently introduced classes of Banach spaces of weak cotype 2 or weak type 2, and the intersection of the classes (weak Hilbert space). The book is based on courses given in Paris and in Texas.

目次

  • Introduction
  • 1. Notation and preliminary background
  • 2. Gaussian variables. K-convexity
  • 3. Ellipsoids
  • 4. Dvoretzky's theorem
  • 5. Entropy, approximation numbers, and Gaussian processes
  • 6. Volume ratio
  • 7. Milman's ellipsoids
  • 8. Another proof of the QS theorem
  • 9. Volume numbers
  • 10. Weak cotype 2
  • 11. Weak type 2
  • 12. Weak Hilbert spaces
  • 13. Some examples: the Tsirelson spaces
  • 14. Reflexivity of weak Hilbert spaces
  • 15. Fredholm determinants
  • Final remarks
  • Bibliography
  • Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ