Permanent magnet and electromechanical devices : materials, analysis, and applications

著者

    • Furlani, Edward P.

書誌事項

Permanent magnet and electromechanical devices : materials, analysis, and applications

Edward P. Furlani

Academic Press, 2001

大学図書館所蔵 件 / 9

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

The book provides both the theoretical and the applied background needed to predict magnetic fields. The theoretical presentation is reinforced with over 60 solved examples of practical engineering applications such as the design of magnetic components like solenoids, which are electromagnetic coils that are moved by electric currents and activate other devices such as circuit breakers. Other design applications would be for permanent magnet structures such as bearings and couplings, which are hardware mechanisms used to fashion a temporary connection between two wires. This book is written for use as a text or reference by researchers, engineers, professors, and students engaged in the research, development, study, and manufacture of permanent magnets and electromechanical devices. It can serve as a primary or supplemental text for upper level courses in electrical engineering on electromagnetic theory, electronic and magnetic materials, and electromagnetic engineering.

目次

Preface 1. Materials Introduction Units Classification of Materials Atomic Magnetic Moments Single electron atoms Multielectron atoms Paramagnetism Ferromagnetism Magnetostatic Energy Demagnetization Field Anisotropy Magnetocrystalline Anisotropy Shape Anisotropy Domains Hysteresis Soft Magnetic Materials Hard Magnetic Materials Ferrites Alnico Samarium-Cobalt Neodymium-iron-boron Bonded Magnets Magnetization Stability 2. Review of Maxwell's Equations Introduction Maxwell's Equations Constitutive Relations Integral Equations Boundary Conditions Force and Torque Potentials Quasi-static Theory Static Theory Magnetostatic Theory Electrostatic Theory Summary 3. Field Analysis Introduction Magnetostatic Analysis Vector Potential Force and Torque Maxwell Stress Tensor Energy Inductance The Current Model The Charge Model Force Torque Magnetic Circuit Analysis Current Sources Magnet Sources Boundary-Value Problems Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates Method of Images Finite Element Analysis Finite Difference Method 4. Permanent Magnet Applications Introduction Magnet Structures Rectangular Structures Cylindrical Structures High Field Structures Magnetic Latching Magnetic Suspension Magnetic Gears Magnetic Couplings Magnetic Resonance Imaging Electrophotography Magneto-Optical Recording Free-Electron Lasers 5. Electromechanical Devices Introduction Device Basics Quasi-static Field Theory Stationary Reference Frame Moving Reference Frames Electrical Equations Stationary Circuits Moving Coils Mechanical Equations Electromechanical Equations Stationary Circuits Moving Coils Energy Analysis Magnetic Circuit Actuators Axial-Field Actuators Resonant Actuators Magneto-Optical Bias Field Actuator Linear Actuators Axial-Field Motors Stepper Motors Hybrid Analytical-FEM Analysis Magnetic MEMS Vector Analysis Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates Integrals of Vector Functions Theorems and Identities Coordinate Transformations Green's Function Systems of Equations Euler's Method Improved Euler Method Runge-Kutta Methods Units

「Nielsen BookData」 より

詳細情報

ページトップへ