Bibliographic Information

Quantum computing : from linear algebra to physical realizations

Mikio Nakahara, Tetsuo Ohmi

CRC Press, c2008

  • : hardcover

Available at  / 33 libraries

Search this Book/Journal

Note

"A Taylor & Francis book"

Includes bibliographical references and index

Description and Table of Contents

Description

Covering both theory and progressive experiments, Quantum Computing: From Linear Algebra to Physical Realizations explains how and why superposition and entanglement provide the enormous computational power in quantum computing. This self-contained, classroom-tested book is divided into two sections, with the first devoted to the theoretical aspects of quantum computing and the second focused on several candidates of a working quantum computer, evaluating them according to the DiVincenzo criteria. Topics in Part I Linear algebra Principles of quantum mechanics Qubit and the first application of quantum information processing-quantum key distribution Quantum gates Simple yet elucidating examples of quantum algorithms Quantum circuits that implement integral transforms Practical quantum algorithms, including Grover's database search algorithm and Shor's factorization algorithm The disturbing issue of decoherence Important examples of quantum error-correcting codes (QECC) Topics in Part II DiVincenzo criteria, which are the standards a physical system must satisfy to be a candidate as a working quantum computer Liquid state NMR, one of the well-understood physical systems Ionic and atomic qubits Several types of Josephson junction qubits The quantum dots realization of qubits Looking at the ways in which quantum computing can become reality, this book delves into enough theoretical background and experimental research to support a thorough understanding of this promising field.

Table of Contents

FROM LINEAR ALGEBRA TO QUANTUM COMPUTING: Basics of Vectors and Matrices. Framework of Quantum Mechanics. Qubits and Quantum Key Distribution. Quantum Gates, Quantum Circuit, and Quantum Computer. Simple Quantum Algorithms. Quantum Integral Transforms. Grover's Search Algorithm. Shor's Factorization Algorithm. Decoherence. Quantum Error-Correcting Codes. Physical Realizations of Quantum Computing: DiVincenzo Criteria. NMR Quantum Computer. Trapped Ions. Quantum Computing with Neutral Atoms. Josephson Junction Qubits. Quantum Computing with Quantum Dots. Appendix. Index.

by "Nielsen BookData"

Details

  • NCID
    BA85636459
  • ISBN
    • 9780750309837
  • LCCN
    2007044310
  • Country Code
    us
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Boca Raton
  • Pages/Volumes
    xvi, 421 p.
  • Size
    25 cm
  • Classification
  • Subject Headings
Page Top