The reflective Lorentzian lattices of rank 3

著者

    • Allcock, Daniel

書誌事項

The reflective Lorentzian lattices of rank 3

Daniel Allcock

(Memoirs of the American Mathematical Society, no. 1033)

American Mathematical Society, 2012

大学図書館所蔵 件 / 10

この図書・雑誌をさがす

注記

"November 2012, volume 220, number 1033 (first of 4 numbers)."

Includes bibliographical references (p. 107-108)

内容説明・目次

内容説明

The author classifies all the symmetric integer bilinear forms of signature $(2,1)$ whose isometry groups are generated up to finite index by reflections. There are 8,595 of them up to scale, whose 374 distinct Weyl groups fall into 39 commensurability classes. This extends Nikulin's enumeration of the strongly square-free cases. The author's technique is an analysis of the shape of the Weyl chamber, followed by computer work using Vinberg's algorithm and a "method of bijections". He also corrects a minor error in Conway and Sloane's definition of their canonical $2$-adic symbol.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB11012148
  • ISBN
    • 9780821869116
  • LCCN
    2012025978
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Providence, R.I.
  • ページ数/冊数
    ix, 108 p.
  • 大きさ
    26 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ