Design and strategy in organic synthesis : from the Chiron approach to catalysis

著者

    • Hanessian, Stephen
    • Giroux, Simon
    • Merner, Bradley L.

書誌事項

Design and strategy in organic synthesis : from the Chiron approach to catalysis

Stephen Hanessian, Simon Giroux, and Bradley L. Merner

Wiley-VCH Verlag GmbH & Co. KGaA, c2013

  • : pbk

大学図書館所蔵 件 / 22

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

巻冊次

: pbk ISBN 9783527319640

内容説明

This long-awaited graduate level book, written by one of the world's leading organic chemists in collaboration with two of his former and present coworkers, adopts a refreshingly unique approach to synthesis planning and execution. Following an introductory look at the concept of synthesis, the authors discuss the Why, What, and How of organic synthesis as they apply to natural products. Although emphasis is on the Chiron Approach utilizing amino-acids, carbohydrates, hydroxy acids, terpenes, lactones and other naturally occurring small molecules as starting materials, catalytic asymmetric methods are also included as a corollary whenever relevant. A must-have source of first class information for everyone working in organic synthesis, be it in academia or industry. With a foreword by Larry E. Overman and David W. C. MacMillan

目次

Foreword xvii Preface xix Acknowledgement xxiii Abbreviations xxv 1 The Concept of Synthesis 1 1.1 Organic Synthesis as a Central Science 1 1.2 Organic Chemistry and the Public 3 1.3 The ''Small Molecules'' of life 6 1.4 Nature's Rules 9 1.5 Organic Synthesis as a Mental and Visual Science 11 1.6 Art, Architecture, and Synthesis 12 1.7 Simplification of Complexity 13 1.8 Seeing Through the Mind's Eye 15 1.9 Beauty is in the Eye of the Beholder 18 References 19 2 The ''Why'' of Synthesis 25 2.1 Nature the Provider, Healer, and Enticer 25 2.2 The Supply Problem 26 2.3 From Bench to Market 28 2.4 Thank you Nature! 30 2.5 Chasing Bugs with a Purpose 32 2.6 Structure-based Organic Synthesis 33 2.7 Almost There or Just Arrived 34 2.8 The Futility of it All 35 2.9 Synthesis as a Seeker of the Truth 36 2.10 Nature as the Ultimate Synthesizer 42 2.11 A Brave New Chemical World 43 2.11.1 Beyond the molecule 43 2.11.2 Buckyballs and fullerenes 45 2.11.3 Dendrimers 45 2.11.4 Nanochemistry 45 2.11.5 Molecular machines 46 2.12 Exploring New Synthetic Methods 47 2.12.1 The Diels-Alder reaction 48 2.12.2 The direct aldol reaction 54 2.12.3 High impact catalytic oxidation and reduction reactions 57 2.12.4 High impact catalytic olefin-producing reactions 59 References 62 3 The''What'' of Synthesis 73 3.1 Periods, Trends, and Incentives 73 3.2 A Century of Synthesis 74 3.3 We the ''Synthesis People'' 81 3.4 Complex and Therapeutic too! 82 3.5 Peptidomimetics and Unnatural Compounds 84 3.6 Diversity Through Complexity 89 References 90 4 The''How'' of Synthesis 97 4.1 The Visual Dialogue 97 4.2 The Psychobiology of Synthesis Planning 98 4.2.1 ''Psychosynthesis'' 101 4.3 The Agony and Ecstasy of Synthesis 102 4.4 Rembrandt Meets Woodward 104 4.4.1 Cortisone 104 4.4.2 Strychnine 108 4.4.2.1 The Woodward Synthesis 109 4.4.2.2 The Overman synthesis 111 4.4.2.3 The Kuehne synthesis 113 4.4.2.4 The Bonjoch and Bosch synthesis 114 4.4.2.5 The Shibasaki synthesis 116 4.4.2.6 The Fukuyama synthesis 118 4.4.2.7 The Mori synthesis 119 4.4.2.8 The MacMillan synthesis 121 4.4.2.9 Strychnine syntheses: Synopsis 122 4.5 The Post Woodwardian Era 123 4.5.1 The convergent template-based approach 123 4.5.2 Chiral auxiliary approach 125 4.5.3 Substrate control approach in cycloadditions 127 4.5.4 Biomimetic cyclization approach 129 4.6 Catalysis and Chirality in Total Synthesis 131 4.6.1 Applications of asymmetric catalysis to drug discovery 136 References 139 5 Sources of Enantiopure Compounds 145 5.1 Optical Resolution 146 5.2 Chemical Kinetic Resolution (KR) 147 5.2.1 Classical, natural, and parallel methods 147 5.2.2 Dynamic chemical kinetic resolution 147 5.3 Cell-free Enzyme-mediated Enantiopure Compounds 149 5.3.1 Hydrolases and ester formation 149 5.3.2 Nitrilases, amidases, and acylases 152 5.4 Cell-free Chemoenzymatic Methods 154 5.5 Metal-catalyzed Dynamic Kinetic Resolution (DKR) 154 5.6 Biocatalytic Methods for Enantiopure Compounds 155 5.6.1 Enzymatic reduction of ketones 155 5.6.2 Enzymatic hydroxylation and epoxidation 156 5.6.3 Enzymatic oxidation of alcohols 157 5.6.4 Enzymatic Baeyer-Villiger oxidation 157 5.7 Applications of Enzymatic and Chemoenzymatic Methods 158 5.8 Chemical Asymmetric Synthesis of Enantiopure Compounds 160 5.9 Enantiopure Compounds from Nature 164 References 165 6 The Chiron Approach 171 6.1 Living Through a Total Synthesis 171 6.2 Principles of the Chiron Approach 172 6.2.1 Definition 173 6.2.2 The Chiron Approach 175 6.2.3 Two philosophies, one goal 176 6.2.4 There is more than meets the eye 180 6.2.5 The flipside of molecules 183 6.2.6 Common root, different MO: chirons and synthons 184 6.2.7 To chiron or not to chiron 186 6.3 Anatomy of a Synthesis 186 References 189 7 Nature's Chirons 193 7.1 -Amino Acids 193 7.2 Carbohydrates 195 7.3 -Hydroxy Acids 200 7.4 Terpenes 203 7.5 Cyclitols 206 References 208 8 From Target Molecule to Chiron 213 8.1 Where's Waldo? 214 8.2 Apparent Chirons 217 8.3 Partially Hidden Chirons 220 8.4 Hidden Chirons 222 8.5 Chirons as ''Sacrificial Lambs'' 224 8.6 Locating -Amino Acid-type Substructures 228 8.6.1 Apparent amino acids 229 8.6.2 Partially hidden amino acids 231 8.6.3 Hidden amino acids 232 8.7 Locating Carbohydrate-type Substructures 234 8.7.1 Patterns and shapes 235 8.7.2 The ''Rule of Five'' 236 8.7.3 Apparent carbohydrates 237 8.7.4 Partially hidden carbohydrates 239 8.7.5 Hidden carbohydrates 240 8.8 Locating Hydroxy Acid-type Substructures 243 8.8.1 Apparent hydroxy acids 243 8.8.2 Partially hidden hydroxy acids 245 8.8.3 Hidden hydroxy acids 248 8.8.4 The Roche acid auniqueC-Methyl chiron 251 8.9 Locating Terpene-type Substructures 254 8.9.1 Apparent terpenes 254 8.9.2 Partially hidden terpenes 258 8.9.3 Hidden terpenes 260 8.9.3.1 The terpene route to taxol 267 8.10 Locating Carbocyclic-type Substructures 270 8.10.1 Apparent carbocycles 271 8.10.2 Partially hidden carbocycles 272 8.10.3 Hidden carbocycles 275 8.10.4 Quinic acid, cyclitols, and other carbocycles as chirons 279 8.11 Locating Chirons Derived from Lactones 283 8.11.1 Apparent lactones 285 8.11.2 Partially hidden lactones 286 8.11.3 Hidden lactones 288 8.11.4 The replicating lactone strategy 292 References 294 9 Applications of the Chiron Approach 301 9.1 Category I Target Molecules 301 9.1.1 Streptolic acid 302 9.1.2 ent-Gelsedine 303 9.1.3 Vincamine 305 9.1.4 Peribysin E 307 9.2 Category II Target Molecules 308 9.2.1 Fk-506 309 9.2.2 Okadaic acid 310 9.2.3 Phorboxazole A 312 9.2.4 Brevetoxin B 314 9.3 Category III Target Molecules 316 9.3.1 Neocarzinostatin 317 9.3.2 Idiospermuline 317 9.4 Prelude to Total Synthesis of Category I Molecules 320 References 320 10 Total Synthesis from -Amino Acid Precursors 323 10.1 Actinobolin 323 10.2 Aspochalasin B 326 10.3 Cephalotaxine 329 10.4 -Kainic Acid (W. Oppolzer) 332 10.5 -Kainic Acid (P. T. Gallagher) 334 10.6 Croomine 336 10.7 Biotin 339 10.8 Salinosporamide A 342 10.9 Thienamycin 345 10.10 Fr901483 348 10.10.1 The Sorensen synthesis 350 10.11 Tuberostemonine 353 10.12 Phyllanthine 358 10.13 Oscillarin 361 10.14 ent-Cyclizidine 364 10.15 Pactamycin 367 10.16 Miscellanea 371 References 373 11 Total Synthesis from Carbohydrate Precursors 377 11.1 Ajmalicine 377 11.2 ent-Actinobolin 381 11.3 Trehazolin and Trehazolamine 384 11.4 Fomannosin 390 11.5 9a-Desmethoxy Mitomycin A 394 11.6 Saxitoxin and -Saxitoxinol 398 11.6.1 Second generation synthesis 400 11.7 ent-Decarbamoyl Saxitoxin 402 11.8 Zaragozic acid A 405 11.9 Hemibrevetoxin B 408 11.10 Carbohydrates in Synthesis and in Biology 416 11.11 Miscellanea 417 References 422 12 Total Synthesis from Hydroxy Acids 427 12.1 Griseoviridin 427 12.2 Halicholactone 431 12.3 Brasilenyne 435 12.4 Octalactin A 438 12.5 (3Z)-Dactomelyne 442 12.6 Ucs1025a 446 12.7 Jerangolid A 449 12.8 Miscellanea 453 References 456 13 Total Synthesis from Terpenes 459 13.1 Picrotoxinin 459 13.2 Eucannabinolide 463 13.3 Trilobolide and Thapsivillosin F 467 13.4 Briarellin E and F 472 13.5 Samaderine Y 477 13.6 Ambiguine H and Hapalindole U 481 13.7 Platensimycin 484 13.7.1 The Nicolaou synthesis 485 13.7.2 The Ghosh synthesis 488 13.7.3 Nicolaou's two asymmetric syntheses 491 13.7.4 Yamamoto's organocatalytic asymmetric synthesis 494 13.7.5 Corey's catalytic enantioselective synthesis 496 13.7.6 Platensimycin and the mind's eye 496 13.8 Phomactin A 500 13.9 Pinnaic Acid 503 13.9.1 The Danishefsky and Zhao asymmetric syntheses 507 13.10 Fusicoauritone 510 13.11 Miscellanea 514 References 516 14 Total Synthesis from Carbocyclic Precursors 521 14.1 Punctatin A 521 14.2 Acanthoic Acid 524 14.3 Stachybocin Spirolactam 527 14.4 Scabronine G 529 14.5 Chapecoderin A 533 14.6 Dragmacidin F 533 14.7 Reserpine 538 14.7.1 The Woodward synthesis 539 14.7.2 The Stork synthesis 542 14.7.3 The Hanessian synthesis 545 14.8 Fawcettimine 548 14.8.1 Toste's synthesis of fawcettimine 548 14.8.2 Heathcock's synthesis of (+/-)-fawcettimine 551 14.9 Tamiflu 553 14.9.1 The Fang and Wong synthesis 553 14.9.2 The Hudlicky and Banwell syntheses 555 14.9.3 The Shibasaki catalytic asymmetric Diels-Alder synthesis 557 14.9.4 Tamiflu synthesis in the age of catalysis: Synopsis 558 14.10 Miscellanea 560 References 563 15 Total Synthesis with Lactones as Precursors 567 15.1 Megaphone 567 15.2 Dihydromevinolin 569 15.3 Mannostatin A 572 15.4 Furaquinocin c 577 15.5 Miscellanea 577 References 580 16 Single Target Molecule-oriented Synthesis 583 16.1 Synchronicity 583 16.2 Joining Forces 584 16.3 Back-to-back Publishing 586 16.3.1 Veratramine (1967) 587 16.3.2 (+/-)-Lycopodine (1968) 588 16.3.3 Ionomycin (1990) 589 16.3.4 Vancomycin aglycone (1998) 591 16.4 Same Year Publications 593 16.4.1 (+/-)-Colchicine (1959) 594 16.4.2 (+/-)-Catharanthine (1970) 595 16.4.3 (+/-)-Cephalotaxine (1972) 596 16.4.4 Bleomycin A 2 (1982) 597 16.4.5 Kopsinine (1985) 598 16.4.6 Rapamycin (1993) 600 16.4.7 Phomoidrides (CP molecules) (2000) 604 16.4.7.1 The Nicolaou Synthesis 604 16.4.7.2 The Shair synthesis 606 16.4.7.3 The Fukuyama synthesis 608 16.4.7.4 The Danishefsky synthesis 609 16.4.7.5 What is in a drawing? 611 16.4.8 Borrelidin (2003-2004) 612 16.4.8.1 The Morken synthesis 612 16.4.8.2 The Hanessian synthesis 614 16.4.8.3 The Omura and Theodorakis syntheses 615 16.4.9 Amphidinolide E (2006) 618 16.5 Single Target Molecules with Special Relevance 620 16.6 Quinine 621 16.6.1 The Stork synthesis 621 16.6.2 Quinine: The Woodward and Doering formal vs total syntheses issue 624 16.6.3 Quinine: Apres Woodward and Doering 627 16.6.3.1 The Uskokovicsynthesis 627 16.6.3.2 The Gates synthesis 630 16.6.3.3 The Taylor and Martin synthesis 631 16.6.4 Quinine: Total synthesis in the modern age of catalysis 631 16.6.4.1 The Jacobsen synthesis 631 16.6.4.2 The Kobayashi synthesis 633 16.6.4.3 The Williams and Krische syntheses of 7-hydroxyquinine 635 16.6.5 The total synthesis of quinine in the mind's eye 637 16.7 Lactacystin 641 16.7.1 The first Corey synthesis 642 16.7.2 The second Corey synthesis 643 16.7.3 The Baldwin synthesis 645 16.7.4 The Chida Synthesis 647 16.7.5 The Omura-Smith synthesis 648 16.7.6 The Panek synthesis 650 16.7.7 The Jacobsen synthesis 651 16.7.8 The Shibasaki synthesis 654 16.7.9 Lactacystin and omuralide: Alternative methods and synthetic approaches 656 16.7.10 The Kang approach 656 16.7.11 The Adams synthesis of omuralide 657 16.7.12 The Ohfune approach 658 16.7.13 The Pattenden approach 659 16.7.14 The Hatekayama approach 659 16.7.15 The Donohue synthesis of (+/-)-omuralide 660 16.7.16 The Wardrop approach 661 16.7.17 The Hayes synthesis of lactacystin 662 16.7.18 Total synthesis of lactacystin: Synopsis 663 16.8 Taxol 665 16.8.1 What mad pursuit 666 16.8.2 The Holton synthesis of taxol 666 16.8.3 The Nicolaou synthesis of taxol 670 16.8.4 The Danishefsky synthesis of taxol 673 16.8.5 The Wender synthesis of taxol 676 16.8.6 The Kuwajima synthesis of taxol 679 16.8.7 The Mukaiyama synthesis of taxol 682 16.8.8 The six total syntheses of taxol: The calm after the storm 685 16.8.9 Total syntheses of taxol in the mind's eye 686 References 690 17 Man, Machine, and Visual Imagery in Synthesis Planning 699 17.1 The LHASA Program 701 17.2 SYNGEN 702 17.3 WODCA 703 17.4 The CHIRON Program 704 17.4.1 CASA (Computer-assisted stereochemical analysis) 704 17.4.2 CAPS (Computer-assisted precursor selection) 705 17.5 Computer-aided synthesis planning 710 References 711 18 The Essence of Synthesis - A Retrospective 713 18.1 Lest we Forget 714 18.2 The Corey and Stork Schools 714 18.3 The Visual Dialogue with Molecules 716 18.4 Total Synthesis: From whence we came 717 18.5 In Pursuit of the ''Ideal Synthesis'' 722 18.5.1 The problem with protecting groups - blessing or curse? 724 18.5.1.1 Protecting-group-free synthesis? 725 18.5.2 The ''redox economy'' problem 725 18.5.3 The ''functional group adjustment'' problem 726 18.5.4 ''Chiral economy'' 727 18.6 For the Love of Synthesis (Synthephilia) 730 18.6.1 Reaching the summit 731 18.7 Organic Synthesis: To where we are going 732 18.8 Synthesis at the Service of Humankind 734 18.9 From the Chiron Approach to Catalysis 736 18.9.1 The young, the brave, and the bold: Passing the baton 740 18.9.1.1 Himandrine 740 18.9.1.2 Palau'amine 743 18.9.1.3 Minfiensine 745 18.9.1.4 Maoecrystal Z 747 18.9.2 Parting thoughts 749 18.10 A Salute to the Vanguards of Synthesis 749 References 750 Author Index [Natural product/Target] 757 Chiron/Starting Material to Natural Product/Target Index 771 Natural product/Target [Chiron] 781 Key (Named) Reactions Index 791
巻冊次

ISBN 9783527333912

内容説明

This long-awaited graduate level book, written by one of the world's leading organic chemists in collaboration with two of his former and present coworkers, adopts a refreshingly unique approach to synthesis planning and execution. Following an introductory look at the concept of synthesis, the authors discuss the Why, What, and How of organic synthesis as they apply to natural products. Although emphasis is on the Chiron Approach utilizing amino-acids, carbohydrates, hydroxy acids, terpenes, lactones and other naturally occurring small molecules as starting materials, catalytic asymmetric methods are also included as a corollary whenever relevant. A must-have source of first class information for everyone working in organic synthesis, be it in academia or industry. With a foreword by Larry E. Overman and David W. C. MacMillan

目次

Foreword XVII Preface XIX Acknowledgement XXIII Abbreviations XXV 1 The Concept of Synthesis 1 1.1 Organic Synthesis as a Central Science 1 1.2 Organic Chemistry and the Public 3 1.3 The Small Molecules of life 6 1.4 Nature s Rules 9 1.5 Organic Synthesis as a Mental and Visual Science 11 1.6 Art, Architecture, and Synthesis 12 1.7 Simplification of Complexity 13 1.8 Seeing Through the Mind s Eye 15 1.9 Beauty is in the Eye of the Beholder 18 References 19 2 The Why of Synthesis 25 2.1 Nature the Provider, Healer, and Enticer 25 2.2 The Supply Problem 26 2.3 From Bench to Market 28 2.4 Thank you Nature! 30 2.5 Chasing Bugs with a Purpose 32 2.6 Structure-based Organic Synthesis 33 2.7 Almost There ... or Just Arrived 34 2.8 The Futility of it All 35 2.9 Synthesis as a Seeker of the Truth 36 2.10 Nature as the Ultimate Synthesizer 42 2.11 A Brave New Chemical World 43 2.11.1 Beyond the molecule 43 2.11.2 Buckyballs and fullerenes 45 2.11.3 Dendrimers 45 2.11.4 Nanochemistry 45 2.11.5 Molecular machines 46 2.12 Exploring New Synthetic Methods 47 2.12.1 The Diels-Alder reaction 48 2.12.2 The direct aldol reaction 54 2.12.3 High impact catalytic oxidation and reduction reactions 57 2.12.4 High impact catalytic olefin-producing reactions 59 References 62 3 The What of Synthesis 73 3.1 Periods, Trends, and Incentives 73 3.2 A Century of Synthesis 74 3.3 We the Synthesis People 81 3.4 Complex and Therapeutic too! 82 3.5 Peptidomimetics and Unnatural Compounds 84 3.6 Diversity Through Complexity 89 References 90 4 The How of Synthesis 97 4.1 The Visual Dialogue 97 4.2 The Psychobiology of Synthesis Planning 98 4.2.1 Psychosynthesis 101 4.3 The Agony and Ecstasy of Synthesis 102 4.4 Rembrandt Meets Woodward 104 4.4.1 Cortisone 104 4.4.2 Strychnine 108 4.4.2.1 The Woodward Synthesis 109 4.4.2.2 The Overman synthesis 111 4.4.2.3 The Kuehne synthesis 113 4.4.2.4 The Bonjoch and Bosch synthesis 114 4.4.2.5 The Shibasaki synthesis 116 4.4.2.6 The Fukuyama synthesis 118 4.4.2.7 The Mori synthesis 119 4.4.2.8 The MacMillan synthesis 121 4.4.2.9 Strychnine syntheses: Synopsis 122 4.5 The Post Woodwardian Era 123 4.5.1 The convergent template-based approach 123 4.5.2 Chiral auxiliary approach 125 4.5.3 Substrate control approach in cycloadditions 127 4.5.4 Biomimetic cyclization approach 129 4.6 Catalysis and Chirality in Total Synthesis 131 4.6.1 Applications of asymmetric catalysis to drug discovery 136 References 139 5 Sources of Enantiopure Compounds 145 5.1 Optical Resolution 146 5.2 Chemical Kinetic Resolution (KR) 147 5.2.1 Classical, natural, and parallel methods 147 5.2.2 Dynamic chemical kinetic resolution 147 5.3 Cell-free Enzyme-mediated Enantiopure Compounds 149 5.3.1 Hydrolases and ester formation 149 5.3.2 Nitrilases, amidases, and acylases 152 5.4 Cell-free Chemoenzymatic Methods 154 5.5 Metal-catalyzed Dynamic Kinetic Resolution (DKR) 154 5.6 Biocatalytic Methods for Enantiopure Compounds 155 5.6.1 Enzymatic reduction of ketones 155 5.6.2 Enzymatic hydroxylation and epoxidation 156 5.6.3 Enzymatic oxidation of alcohols 157 5.6.4 Enzymatic Baeyer-Villiger oxidation 157 5.7 Applications of Enzymatic and Chemoenzymatic Methods 158 5.8 Chemical Asymmetric Synthesis of Enantiopure Compounds 160 5.9 Enantiopure Compounds from Nature 164 References 165 6 The Chiron Approach 171 6.1 Living Through a Total Synthesis 171 6.2 Principles of the Chiron Approach 172 6.2.1 Definition 173 6.2.2 The Chiron Approach 175 6.2.3 Two philosophies, one goal 176 6.2.4 There is more than meets the eye 180 6.2.5 The flipside of molecules 183 6.2.6 Common root, different MO: chirons and synthons 184 6.2.7 To chiron or not to chiron 186 6.3 Anatomy of a Synthesis 186 References 189 7 Nature s Chirons 193 7.1 -Amino Acids 193 7.2 Carbohydrates 195 7.3 -Hydroxy Acids 200 7.4 Terpenes 203 7.5 Cyclitols 206 References 208 8 From Target Molecule to Chiron 213 8.1 Where s Waldo? 214 8.2 Apparent Chirons 217 8.3 Partially Hidden Chirons 220 8.4 Hidden Chirons 222 8.5 Chirons as Sacrificial Lambs 224 8.6 Locating -Amino Acid-type Substructures 228 8.6.1 Apparent amino acids 229 8.6.2 Partially hidden amino acids 231 8.6.3 Hidden amino acids 232 8.7 Locating Carbohydrate-type Substructures 234 8.7.1 Patterns and shapes 235 8.7.2 The Rule of Five 236 8.7.3 Apparent carbohydrates 237 8.7.4 Partially hidden carbohydrates 239 8.7.5 Hidden carbohydrates 240 8.8 Locating Hydroxy Acid-type Substructures 243 8.8.1 Apparent hydroxy acids 243 8.8.2 Partially hidden hydroxy acids 245 8.8.3 Hidden hydroxy acids 248 8.8.4 The Roche acid a unique C-Methyl chiron 251 8.9 Locating Terpene-type Substructures 254 8.9.1 Apparent terpenes 254 8.9.2 Partially hidden terpenes 258 8.9.3 Hidden terpenes 260 8.9.3.1 The terpene route to taxol 267 8.10 Locating Carbocyclic-type Substructures 270 8.10.1 Apparent carbocycles 271 8.10.2 Partially hidden carbocycles 272 8.10.3 Hidden carbocycles 275 8.10.4 Quinic acid, cyclitols, and other carbocycles as chirons 279 8.11 Locating Chirons Derived from Lactones 283 8.11.1 Apparent lactones 285 8.11.2 Partially hidden lactones 286 8.11.3 Hidden lactones 288 8.11.4 The replicating lactone strategy 292 References 294 9 Applications of the Chiron Approach 301 9.1 Category I Target Molecules 301 9.1.1 Streptolic acid 302 9.1.2 ent-Gelsedine 303 9.1.3 Vincamine 305 9.1.4 Peribysin E 307 9.2 Category II Target Molecules 308 9.2.1 FK-506 309 9.2.2 Okadaic acid 310 9.2.3 Phorboxazole A 312 9.2.4 Brevetoxin B 314 9.3 Category III Target Molecules 316 9.3.1 Neocarzinostatin 317 9.3.2 Idiospermuline 317 9.4 Prelude to Total Synthesis of Category I Molecules 320 References 320 10 Total Synthesis from -Amino Acid Precursors 323 10.1 Actinobolin 323 10.2 Aspochalasin B 326 10.3 Cephalotaxine 329 10.4 -Kainic Acid (W. Oppolzer) 332 10.5 -Kainic Acid (P. T. Gallagher) 334 10.6 Croomine 336 10.7 Biotin 339 10.8 Salinosporamide A 342 10.9 Thienamycin 345 10.10 FR901483 348 10.10.1 The Sorensen synthesis 350 10.11 Tuberostemonine 353 10.12 Phyllanthine 358 10.13 Oscillarin 361 10.14 ent-Cyclizidine 364 10.15 Pactamycin 367 10.16 Miscellanea 371 References 373 11 Total Synthesis from Carbohydrate Precursors 377 11.1 Ajmalicine 377 11.2 ent-Actinobolin 381 11.3 Trehazolin and Trehazolamine 384 11.4 Fomannosin 390 11.5 9a-Desmethoxy Mitomycin A 394 11.6 Saxitoxin and -Saxitoxinol 398 11.6.1 Second generation synthesis 400 11.7 ent-Decarbamoyl Saxitoxin 402 11.8 Zaragozic acid A 405 11.9 Hemibrevetoxin B 408 11.10 Carbohydrates in Synthesis and in Biology 416 11.11 Miscellanea 417 References 422 12 Total Synthesis from Hydroxy Acids 427 12.1 Griseoviridin 427 12.2 Halicholactone 431 12.3 Brasilenyne 435 12.4 Octalactin A 438 12.5 (3Z)-Dactomelyne 442 12.6 UCS1025A 446 12.7 Jerangolid A 449 12.8 Miscellanea 453 References 456 13 Total Synthesis from Terpenes 459 13.1 Picrotoxinin 459 13.2 Eucannabinolide 463 13.3 Trilobolide and Thapsivillosin F 467 13.4 Briarellin E and F 472 13.5 Samaderine Y 477 13.6 Ambiguine H and Hapalindole U 481 13.7 Platensimycin 484 13.7.1 The Nicolaou synthesis 485 13.7.2 The Ghosh synthesis 488 13.7.3 Nicolaou s two asymmetric syntheses 491 13.7.4 Yamamoto s organocatalytic asymmetric synthesis 494 13.7.5 Corey s catalytic enantioselective synthesis 496 13.7.6 Platensimycin and the mind s eye 496 13.8 Phomactin A 500 13.9 Pinnaic Acid 503 13.9.1 The Danishefsky and Zhao asymmetric syntheses 507 13.10 Fusicoauritone 510 13.11 Miscellanea 514 References 516 14 Total Synthesis from Carbocyclic Precursors 521 14.1 Punctatin A 521 14.2 Acanthoic Acid 524 14.3 Stachybocin Spirolactam 527 14.4 Scabronine G 529 14.5 Chapecoderin A 533 14.6 Dragmacidin F 533 14.7 Reserpine 538 14.7.1 The Woodward synthesis 539 14.7.2 The Stork synthesis 542 14.7.3 The Hanessian synthesis 545 14.8 Fawcettimine 548 14.8.1 Toste s synthesis of fawcettimine 548 14.8.2 Heathcock s synthesis of (+/-)-fawcettimine 551 14.9 Tamiflu 553 14.9.1 The Fang and Wong synthesis 553 14.9.2 The Hudlicky and Banwell syntheses 555 14.9.3 The Shibasaki catalytic asymmetric Diels-Alder synthesis 557 14.9.4 Tamiflu synthesis in the age of catalysis: Synopsis 558 14.10 Miscellanea 560 References 563 15 Total Synthesis with Lactones as Precursors 567 15.1 Megaphone 567 15.2 Dihydromevinolin 569 15.3 Mannostatin A 572 15.4 Furaquinocin C 577 15.5 Miscellanea 577 References 580 16 Single Target Molecule-oriented Synthesis 583 16.1 Synchronicity 583 16.2 Joining Forces 584 16.3 Back-to-back Publishing 586 16.3.1 Veratramine (1967) 587 16.3.2 (+/-)-Lycopodine (1968) 588 16.3.3 Ionomycin (1990) 589 16.3.4 Vancomycin aglycone (1998) 591 16.4 Same Year Publications 593 16.4.1 (+/-)-Colchicine (1959) 594 16.4.2 (+/-)-Catharanthine (1970) 595 16.4.3 (+/-)-Cephalotaxine (1972) 596 16.4.4 Bleomycin A2 (1982) 597 16.4.5 Kopsinine (1985) 598 16.4.6 Rapamycin (1993) 600 16.4.7 Phomoidrides (CP molecules) (2000) 604 16.4.7.1 The Nicolaou Synthesis 604 16.4.7.2 The Shair synthesis 606 16.4.7.3 The Fukuyama synthesis 608 16.4.7.4 The Danishefsky synthesis 609 16.4.7.5 What is in a drawing? 611 16.4.8 Borrelidin (2003 2004) 612 16.4.8.1 The Morken synthesis 612 16.4.8.2 The Hanessian synthesis 614 16.4.8.3 The O mura and Theodorakis syntheses 615 16.4.9 Amphidinolide E (2006) 618 16.5 Single Target Molecules with Special Relevance 620 16.6 Quinine 621 16.6.1 The Stork synthesis 621 16.6.2 Quinine: The Woodward and Doering formal vs total syntheses issue 624 16.6.3 Quinine: Apr'es Woodward and Doering 627 16.6.3.1 The Uskokovi'c synthesis 627 16.6.3.2 The Gates synthesis 630 16.6.3.3 The Taylor and Martin synthesis 631 16.6.4 Quinine: Total synthesis in the modern age of catalysis 631 16.6.4.1 The Jacobsen synthesis 631 16.6.4.2 The Kobayashi synthesis 633 16.6.4.3 The Williams and Krische syntheses of 7-hydroxyquinine 635 16.6.5 The total synthesis of quinine in the mind s eye 637 16.7 Lactacystin 641 16.7.1 The first Corey synthesis 642 16.7.2 The second Corey synthesis 643 16.7.3 The Baldwin synthesis 645 16.7.4 The Chida Synthesis 647 16.7.5 The O mura-Smith synthesis 648 16.7.6 The Panek synthesis 650 16.7.7 The Jacobsen synthesis 651 16.7.8 The Shibasaki synthesis 654 16.7.9 Lactacystin and omuralide: Alternative methods and synthetic approaches 656 16.7.10 The Kang approach 656 16.7.11 The Adams synthesis of omuralide 657 16.7.12 The Ohfune approach 658 16.7.13 The Pattenden approach 659 16.7.14 The Hatekayama approach 659 16.7.15 The Donohue synthesis of (+/-)-omuralide 660 16.7.16 The Wardrop approach 661 16.7.17 The Hayes synthesis of lactacystin 662 16.7.18 Total synthesis of lactacystin: Synopsis 663 16.8 Taxol 665 16.8.1 What mad pursuit 666 16.8.2 The Holton synthesis of taxol 666 16.8.3 The Nicolaou synthesis of taxol 670 16.8.4 The Danishefsky synthesis of taxol 673 16.8.5 The Wender synthesis of taxol 676 16.8.6 The Kuwajima synthesis of taxol 679 16.8.7 The Mukaiyama synthesis of taxol 682 16.8.8 The six total syntheses of taxol: The calm after the storm 685 16.8.9 Total syntheses of taxol in the mind s eye 686 References 690 17 Man, Machine, and Visual Imagery in Synthesis Planning 699 17.1 The LHASA Program 701 17.2 SYNGEN 702 17.3 WODCA 703 17.4 The CHIRON Program 704 17.4.1 CASA (Computer-assisted stereochemical analysis) 704 17.4.2 CAPS (Computer-assisted precursor selection) 705 17.5 Computer-aided synthesis planning 710 References 711 18 The Essence of Synthesis A Retrospective 713 18.1 Lest we Forget 714 18.2 The Corey and Stork Schools 714 18.3 The Visual Dialogue with Molecules 716 18.4 Total Synthesis: From whence we came... 717 18.5 In Pursuit of the Ideal Synthesis 722 18.5.1 The problem with protecting groups blessing or curse? 724 18.5.1.1 Protecting-group-free synthesis? 725 18.5.2 The redox economy problem 725 18.5.3 The functional group adjustment problem 726 18.5.4 Chiral economy 727 18.6 For the Love of Synthesis (Synthephilia) 730 18.6.1 Reaching the summit 731 18.7 Organic Synthesis: To where we are going 732 18.8 Synthesis at the Service of Humankind 734 18.9 From the Chiron Approach to Catalysis 736 18.9.1 The young, the brave, and the bold: Passing the baton 740 18.9.1.1 Himandrine 740 18.9.1.2 Palau amine 743 18.9.1.3 Minfiensine 745 18.9.1.4 Maoecrystal Z 747 18.9.2 Parting thoughts 749 18.10 A Salute to the Vanguards of Synthesis 749 References 750 Author Index [Natural product/Target] 757 Chiron/Starting Material to Natural Product/Target Index 771 Natural product/Target [Chiron] 781 Key (Named) Reactions Index 791

「Nielsen BookData」 より

詳細情報

  • NII書誌ID(NCID)
    BB13391069
  • ISBN
    • 9783527319640
    • 9783527333912
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Weinheim
  • ページ数/冊数
    xxvii, 794 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
ページトップへ