Chemical reaction engineering : essentials, exercises and examples

著者

    • Schmal, Martin

書誌事項

Chemical reaction engineering : essentials, exercises and examples

Martin Schmal

(A Balkema book)

CRC Press, c2014

  • : pbk

大学図書館所蔵 件 / 3

この図書・雑誌をさがす

内容説明・目次

内容説明

Chemical Reaction Engineering: Essentials, Exercises and Examples presents the essentials of kinetics, reactor design and chemical reaction engineering for undergraduate students. Concise and didactic in its approach, it features over 70 resolved examples and many exercises. The work is organized in two parts: in the first part kinetics is presented focusing on the reaction rates, the influence of different variables and the determination of specific rate parameters for different reactions both homogeneous and heterogeneous. This section is complemented with the classical kinetic theory and in particular with many examples and exercises. The second part introduces students to the distinction between ideal and non-ideal reactors and presents the basic equations of batch and continuous ideal reactors, as well as specific isothermal and non-isothermal systems. The main emphasis however is on both qualitative and quantitative interpretation by comparing and combining reactors with and without diffusion and mass transfer effects, complemented with several examples and exercises. Finally, non-ideal and multiphase systems are presented, as well as specific topics of biomass thermal processes and heterogeneous reactor analyses. The work closes with a unique section on the application of theory in laboratory practice with kinetic and reactor experiments. This textbook will be of great value to undergraduate and graduate students in chemical engineering as well as to graduate students in and researchers of kinetics and catalysis.

目次

Preface Nomenclature About the author 1 Definitions and stoichiometry 1.1 Measurement variables 1.2 Calculation of measurement variables 1.2.1 Extent of the reaction 1.2.2 Conversion 1.3 Continuous systems 1.4 Partial pressures 1.5 Method of total pressure 1.6 General properties 1.7 Solved problems 2 Chemical equilibrium 3 Kinetic of reactions 3.1 Reaction rates-definitions 3.2 Reaction rate 3.2.1 Kinetic equations 3.3 Influence of the temperature on the reaction rate 3.3.1 Reversible reactions 3.3.2 Interpretation remarks 4 Molar balance in open and closed systems with chemical reaction 4.1 Batch 4.2 Continuous stirring tank reactor 4.3 Continuous tubular reactor 5 Determination of kinetic parameters 5.1 Irreversible reaction at constant volume 5.1.1 Kinetic model of first order 5.1.2 Kinetic model of second order (global) 5.2 Irreversible reactions at variable volume 5.2.1 Irreversible of first order 5.2.2 Irreversible reactions of second order 5.3 Irreversible reactions of order n-half-life method 5.4 Reversible reactions at constant volume 5.4.1 Direct and reverse first-order elementary reaction 5.4.2 Direct and reverse second-order elementary reaction 5.5 Determination of the kinetic parameters by the differential method 5.5.1 Differential reactor 6 Kinetics of multiple reactions 6.1 Simple reactions in series 6.2 Simple parallel reactions 6.3 Continuous systems 6.4 Kinetics of complex reactions 6.4.1 Decomposition reactions 6.4.2 Parallel reactions 6.4.3 Series-parallel reactions 7 Non-elementary reactions 7.1 Classical kinetic model 7.2 Chain reactions 7.3 Theory of the transition state 8 Polymerization reactions 8.1 Reactions of thermal cracking 8.2 Kinetics of polymerization reactions 8.3 Reactions by addition of radicals 8.3.1 Initiation 8.3.2 Propagation 8.3.3 Termination 9 Kinetics of liquid-phase reactions 9.1 Enzymatic reactions 9.1.1 Kinetic model 9.1.2 Determination of the kinetic parameters 9.1.3 Effect of external inhibitors 9.1.4 Kinetics of biological fermentation 9.1.5 Mass balance 9.2 Liquid-phase reactions 9.2.1 Liquid solutions 9.2.2 Acid-base reactions 10 Heterogeneous reaction kinetics 10.1 External phenomena 10.2 Internal diffusion phenomena 10.3 Adsorption-desorption phenomena 10.3.1 Physical adsorption or physisorption 10.3.2 Chemical adsorption or chemisorption 10.3.3 Comparing physical and chemical adsorptions 10.4 Adsorption isotherms 10.5 Adsorption models 10.5.1 Langmuir model 10.5.2 Other chemisorption models 10.6 Model of heterogeneous reactions 10.6.1 Langmuir-Hinshelwood-Hougen-Watson model (LHHW) 10.6.2 Eley-Rideal model 10.6.3 Effect of the temperature and energies 10.7 Determination of the constants 10.8 Noncatalytic heterogeneous reactions 11 Kinetic exercises 11.1 Solution of kinetic exercises 11.2 Proposed exercises 12 Elementary concepts of the collision theory 12.1 Collision and reaction rates 13 Catalysis: Analyzing variables influencing the catalytic properties 13.1 Introduction 13.2 Selection of catalysts 13.3 Activity patterns 13.3.1 Model reactions 13.3.2 Cyclohexane dehydrogenation 13.3.3 Benzene hydrogenation 13.4 Conventional preparation methods of catalysts 13.4.1 Precipitation/coprecipitation methods 13.4.2 Impregnation of metals on supports 13.4.3 Ion exchange 13.5 Analyses of variables influencing final properties of catalysts 13.5.1 Influence of pH 13.5.2 Autoclaving 13.5.3 Influence of time, concentration, and impregnation cycles 13.6 Thermal treatments 13.6.1 Drying 13.6.2 Calcination 13.7 Effect of reduction temperature on interaction and sintering 13.8 Influence of the support and metal concentration over the reduction 13.9 Influence of the heating rate 13.10 Influence of vapor 13.11 Effect of temperature and reaction time 13.12 Strong metal support interaction 13.13 Experimental design-influence of parameters on the catalytic performance 13.14 Conclusion 14 Ideal reactors 14.1 Types of reactors 14.2 Definitions and concepts of residence time 14.3 Ideal reactors 14.3.1 Batch reactor 14.3.2 Continuous tank reactor 14.3.3 Continuous tubular reactor (PFR) 14.4 Ideal nonisothermal reactors 14.4.1 Adiabatic continuous reactor 14.4.2 Nonadiabatic batch reactor 14.4.3 Adiabatic batch reactor 14.4.4 Analysis of the thermal effects 15 Specific reactors 15.1 Semibatch reactor 15.2 Reactor with recycle 15.3 Pseudo-homogeneous fixed-bed reactor 15.4 Membrane reactors 16 Comparison of reactors 16.1 Comparison of volumes 16.1.1 Irreversible first-order reaction at constant volume 16.1.2 Irreversible second-order reaction at constant volume 16.1.3 Reactions at variable volume 16.2 Productivity 16.3 Yield/selectivity 16.4 Overall yield 16.4.1 Effect of reaction order 16.4.2 Effects of kinetic constants 16.4.3 Presence of two reactants 16.5 Reactions in series 17 Combination of reactors 17.1 Reactors in series 17.1.1 Calculating the number of reactors in series to an irreversible first-order reaction 17.1.2 Calculating the number of reactors in series for an irreversible second-order reaction 17.1.3 Graphical solution 17.2 Reactors in parallel 17.3 Production rate in reactors in series 17.4 Yield and selectivity in reactors in series 18 Transport phenomena in heterogeneous systems 18.1 Intraparticle diffusion limitation-pores 18.2 Effectiveness factor 18.3 Effects of intraparticle diffusion on the experimental parameters 18.4 External mass transfer and intraparticle diffusion limitations 19 Catalyst deactivation 19.1 Kinetics of deactivation 19.2 Deactivation in PFR or CSTR reactor 19.3 Forced deactivation 19.4 Catalyst regeneration 19.4.1 Differential scanning calorimetry 19.4.2 Temperature programmed oxidation 19.4.3 Catalytic evaluation 19.5 Kinetic study of regeneration 19.5.1 Balance with respect to solid (carbon) 19.5.2 Particular case 20 Exercises reactors and heterogeneous reactors 20.1 Solutions to exercises: reactors 20.2 Exercises proposed: reactors 21 Multiphase reacting systems 22 Heterogeneous reactors 22.1 Fixed bed reactor 22.1.1 Reactors in series 22.2 Fluidized bed reactor 23 Biomass-thermal and catalytic processes 23.1 Introduction 23.2 Chemical nature of raw material from biomass 23.3 Biomass pyrolysis 23.4 Pyrolysis kinetics 23.5 Biomass reactors 23.5.1 Mass balance 23.5.2 Energy balance 23.6 Bio-oil upgrading and second-generation processes 23.6.1 Hydrodeoxygenation 23.6.2 Fischer-Tropsch synthesis 24 Nonideal reactors 24.1 Introduction 24.2 Residence time distribution 24.2.1 Ideal cases 24.2.2 Variance 24.3 Mixing effects 24.3.1 Irreversible reactions 24.4 Analysis of nonideal reactors 24.4.1 Momentum 24.4.2 Mass balance 24.4.3 Energy balance 24.4.4 Analysis of boundary conditions 25 Experimental practices 25.1 Reactions in homogeneous phase 25.1.1 Free radical polymerization of styrene 25.1.2 Polymerization of isobutylene 25.2 Reactions in heterogeneous phase 25.2.1 Experimental system 25.2.2 Determination of activation energy: dehydrogenation of cyclohexane 25.2.3 Kinetic study-methane reforming with CO2-heterogeneous reaction 25.3 Performance of reactors 25.3.1 Batch reactor-hydrogenation of sucrose 25.3.2 Integral continuous flow reactor (tubular)-isomerization of xylenes 25.3.3 Goals References Subject index

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB16112707
  • ISBN
    • 9780415695381
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Boca Raton, Fla.
  • ページ数/冊数
    xviii, 682 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ