書誌事項

Biological magnetic resonance

edited by Lawrence J. Berliner and Jacques Reuben

Plenum Press, c1978-1990

  • v. 1
  • v. 2
  • v. 3
  • v. 4
  • v. 5
  • v. 6
  • v. 7
  • v. 8
  • v. 9

大学図書館所蔵 件 / 45

この図書・雑誌をさがす

注記

Bibliography

Includes index

子書誌あり

内容説明・目次

巻冊次

v. 3 ISBN 9780306406126

内容説明

We are proud to present Volume 3 of Biological Magnetic Resonance, a series that has met with praise from the scientific community. This volume covers the new applications of various multiple irradia- tion techniques to the NMR of biomolecules; the chapter of Keller and Wuthrich describes much of the technique and its applications to hemo- proteins. The ESR of some hemoproteins in the single crystal is described by Chien and Dickinson, who also include discussions of techniques and methods for single-crystal ESR of paramagnetically intrinsic and spin- labeled protein crystals. Mims and Peisach describe the latest applications and results in electron spin echo spectroscopy of several metalloproteins. Two ESR spin probe techniques are reviewed. Chasteen describes the methods and applications of vanadyl(JV) to several systems. Ohnishi and Tokutomi describe studies of phase separations in mixed and model mem- branes by the nitroxide spin probe technique. We have been successful in continuing to provide topics that are timely and experimentally informative with a heavy emphasis on biolo- gically relevant applications. We thank our colleagues in the scientific com- munity for their suggestions on future coverage-we will remain receptive to future suggestions and comments on this series. A tentative topic list for forthcoming volumes is given on the following pages.

目次

1 Multiple Irradiation 1H NMR Experiments with Hemoproteins.- 1. Introduction.- 2. Use of Multiple Irradiation 1H NMR Techniques.- 3. Studies of the Heme Groups and the Axial Ligands of the Heme Iron.- 4. Studies of Aromatic Amino Acid Residues.- 5. Nuclear Overhauser Effects for Studies of Nonbonding Heme-Polypeptide Interactions.- References.- 2 Vanadyl(IV) EPR Spin Probes: Inorganic and Biochemical Aspects.- 1. Introduction.- 2. Inorganic Chemistry and Spectroscopy of the Vanadyl Ion.- 3. Protein Studies.- 4. Biomineralization Processes.- 5. Nucleic Acids.- 6. Biological Vanadium.- 7. Liquid Crystals and Micelles.- 8. Biogeochemical Studies.- 9. A Look to the Future.- References.- 3 ESR Studies of Calcium- and Proton-Induced Phase Separations in Phosphatidylserine-Phosphatidylcholine Mixed Membranes.- 1. Introduction—Spin Probe (ESR) Applications to Membrane Studies.- 2. Examples of ESR Spectral Changes Associated with PC* Clustering or Concentration in Membranes.- 3. Ca2+-Induced Phase Separation in PS-PC Membranes.- 4. H+-Induced Phase Separation in PS-PC Membranes.- 5. Disappearance of Ca2+-Induced Phase Separation in PS-PC Membranes.- 6. Ca2+-Induced Phase Separation in PA-PC Membranes.- 7. Discussion.- References.- 4 EPR Crystallography of Metalloproteins and Spin-Labeled Enzymes.- 1. Introduction.- 2. Experimental Methods and Procedures.- 3. Data Processing.- 4. EPR Theory.- 5. Structure Determinations.- 6. Lattice Disorder.- 7. Molecular Dynamics.- 8. Miscellaneous Studies.- 9. Appendix.- References.- 5 Electron Spin Echo Spectroscopy and the Study of Metalloproteins.- 1. Introduction.- 2. The Design of Electron Spin Echo Experiments.- 3. Echo Envelope Spectroscopy.- 4. The Detection of Small Perturbations.- 5. Measurement of the Spin-Lattice Relaxation TimeT1.- 6. Summary.- References.
巻冊次

v. 6 ISBN 9780306416835

内容説明

We have now reached our sixth volume in a series which has somewhat unintentionally become an annual event. While we still intend to produce a volume only if a suitable number of excellent chapters in the forefront of biological magnetic resonance are available, our philosophy is to present a pedagogical yet critical description and review of selected topics in mag- netic resonance of current interest to the community of biomedical scien- tists. This volume fulfills our goals well. As always, we open the volume with a chapter which directly addresses an in vivo biological problem: Phil Bolton's presentation of new techniques in measuring 31 P NMR in cells. Lenkinski's chapter on the theory and applications of lanthanides in protein studies covers the details, highlights, and pitfalls of analysis of these com- plexes in biochemical NMR. Reed and Markham summarize the interpreta- tion of EPR spectra of manganese in terms of structure and function of proteins and enzymes. Dalton and colleagues describe the applications to biological problems of the relatively new capability of time domain ESR. Finally, we are pleased to offer a departure from mainstream magnetic resonance with the comprehensive and stimulating chapter by Gus Maki on the theory, instrumentation, and applications of optically detected magnetic resonance.

目次

1 Two-Dimensional Spectroscopy as a Conformational Probe of Cellular Phosphates.- 1. Introduction.- 2. Basic Principles of Heteronuclear Two-Dimensional NMR.- 3. Analysis of Heteronuclear Two-Dimensional NMR Spectra.- 4. Experimental and Instrumental Considerations.- 5. Range and Limitations of Heteronuclear Two-Dimensional NMR.- 6. Long-Range Spying: Relayed Transfer Spectroscopy.- 7. Heteronuclear Zero Quantum Spectroscopy.- 8. Future Applications and Developments.- References.- 2 Lanthanide Complexes of Peptides and Proteins.- 1. Introduction.- 2. Chemistry of the Lanthanide Ions.- 2.1. Ionic Radii and Hydration Numbers.- 2.2. Isostructurality of Lanthanide Complexes.- 2.3. Thermodynamics and Kinetics of Complex Formation.- 3. Theoretical Background.- 3.1. Chemical Exchange.- 3.2. Chemical Shifts.- 3.3. Relaxation Rates.- 3.4. Conformational Averaging.- 4. Proteins.- 4.1. Lysozyme.- 4.2. Carp Parvalbumin.- 5. Peptides.- 5.1. Angiotensin II.- 5.2. Neurohypophyseal Hormones.- 6. Conclusions.- References.- 3 EPR of Mn(II) Complexes with Enzymes and Other Proteins.- 1. Introduction.- 1.1. Electronic Configuration of Mn(II).- 1.2. Coordination Properties.- 2. EPR Properties of Mn(II).- 2.1. Introduction.- 2.2. The Superposition Model.- 2.3. Symmetry Considerations.- 2.4. Ligand Superhyperfine Coupling.- 3. Experimental Methods.- 4. The Spin Hamiltonian.- 5. Evaluation of ZFS Parameters.- 5.1. Larger Zero-Field Splittings.- 5.2. Magnetic Interactions between Mn(II) Ions.- 5.3. Dipolar Interactions.- 5.4. Exchange Interactions.- 6. Applications.- 6.1. Concanavalin A.- 6.2. Creatine Kinase.- 6.3. 3-Phosphoglycerate Kinase.- 6.4. Pyruvate Kinase.- 6.5. Pyruvate and Phosphate Dikinase.- 6.6. Glutamine Synthetase.- 6.7. Adenylosuccinate Synthetase.- 6.8. Enolase.- 6.9. S-Adenosylmethionine Synthetase.- 7. Summary and Prospects.- Appendix I: FORTRAN Program for Simulation of Mn(II) Powder EPR Spectra.- References.- 4 Biological Applications of Time Domain ESR.- 1. Introduction.- 2. Pulsed EPR Experiments.- 2.1. Measurement of Spin-Spin or Phase Memory Times.- 2.2. Measurement of Spin-Lattice Relaxation Times.- 2.3. Measurement of Spectral Diffusion Times.- 2.4. Measurement of Chemical Reaction Rates.- 2.5. Analysis of Electron Spin Echo Envelope Modulation (ESEEM or ESEM) and the Measurement of Hyperfine and Quadrupolar Interactions.- 2.6. ESE Studies of the Linear Electric Field Effect (LEFE).- 2.7. ESE Studies Employing Magnetic Field Gradients.- 3. Instrumentation.- 3.1. Spin Echo Spectrometers.- 3.2. Saturation Recovery Spectrometers.- 4. Comment On The Future Of Pulsed EPR Techniques.- References.- 5 Techniques, Theory, and Biological Applications of Optically Detected Magnetic Resonance (ODMR).- 1. Introduction.- 2. The Photoexcited Triplet State.- 2.1. Electron Magnetic Dipole-Dipole Interactions.- 2.2. Magnetic Resonance Transitions in Zero Field.- 2.3. Effects of an External Magnetic Field.- 2.4. Spin-Orbit Coupling.- 3. Theory and Methods of ODMR.- 3.1. Steady-State (Slow-Passage) Measurements.- 3.2. Transient ODMR Methods with Continuous Optical Pumping.- 3.3. Transient Measurements in the Absence of Optical Pumping.- 3.4. Methods for Obtaining the Relative Populations and ISC Rates.- 3.5. Multiple Resonance Methods.- 3.6. Linewidths in ODMR Spectra.- 4. Experimental Considerations.- 4.1. The Basic Spectrometer.- 4.2. Modifications for Kinetics Measurements.- 4.3. System Details.- 5. ODMR of Biologically Significant Molecules.- 5.1. Amino Acids, Peptides, and Proteins.- 5.2. The Nucleic Acids.- 5.3. Porphyrins and Photosynthetic Systems.- References.
巻冊次

v. 7 ISBN 9780306424557

内容説明

We are again proud to present an excellent volume of contemporary topics in NMR and EPR to the biological community. The philosophy behind the volume and the presentation of each chapter remains at the high level reflected in our earlier volumes: to be current, pedagogical, and critical. The first chapters, as always, address a subject related to in-vivo biology. Gabby Elgavish addresses NMR spectroscopy of the intact heart. lain Campbell and colleagues present a state-of-the-art description of NMR methods for probing enzyme kinetics in intact cells and tissues. Klaus Mobius and Wolfgang Lubitz have produced a thorough review of the principles and applications of ENDOR spectroscopy in photobiology and biochemistry including discussions of liquid and solid state ENDOR as well as CIDEP-enhanced ENDOR. The final chapter by Hans Vogel and Sture Forsen addresses a contemporary problem in inorganic biochemistry, namely cation binding to calcium binding proteins. We are pleased to announce that a special forthcoming volume will be devoted entirely to the subject of "Spin Labeling: Theory and Applications (3rd compendium)." A substantial degree of progress has occurred in this important area of ESR in biology since the last treatise on the subject in 1979. Lastly, we acknowledge our colleagues in the field who continue to support this excellent series both as subscribers and contributors. We pledge to continue servicing the community as long as the need exists.

目次

1 NMR Spectroscopy of the Intact Heart.- 1. Introduction.- 2. Experimental Methods.- 3. Applications.- 4. Concluding Remarks.- References.- 2 NMR Methods for Studying Enzyme Kinetics in Cells and Tissue.- 1. Introduction.- 2. Metabolic Pathways.- 3. Measurements of Concentration Changes.- 4. Line Shape, T2 and T1.- 5. Magnetization Transfer.- 6. Isotope Exchange.- 7. Conclusion.- References.- 3 Endor Spectroscopy in Photobiology and Biochemistry.- 1. Introduction.- 2. Principles of Electron—Nuclear Multiple Resonance Spectroscopy.- 3. Representative Examples.- 4. Summary.- Recent Developments.- References.- 4 NMR Studies of Calcium-Binding Proteins.- 1. Introduction.- 2. Calcium-43 NMR Studies.- 3. Magnesium-25 NMR Studies.- 4. Cadmium-113 NMR Studies.- 5. Metal Ion Competition Experiments.- 6. Ligand Interactions.- 7. Proton NMR Studies.- 8. Epilogue.- References.
巻冊次

v. 8 ISBN 9780306430725

内容説明

We present this special topics volume on an area which has not received thorough coverage for over 12 years. Spin Labeling: Theory and Applications represents a complete update on new theoretical aspects and applications of the spin-label method. In the "line-shape theory" sections, we are especially pleased to include an IBM-compatible diskette supplied by David Schneider and Jack Freed which contains fast, accurate, ready-to-use software for slow-motion simulations. Barney Bales discusses inhomogeneous broadening phenomena in detail. Several developments in techniques and interpretation in saturation transfer spectroscopy have appeared since the publica- tion of Spin Labeling II: Theory and Applications (L. J. Berliner, ed., Academic Press, 1979). We have included an up-to-date chapter on spin-label applications by M. A. Hemminga and P. A. de Jager. By incorporating 15N and deuterium into nitroxide spin labels, several unique advantages are derived in line-shape analysis. Albert Beth and Bruce Robinson have contributed a detailed chapter on the analysis of these labels in the slow-motion regime while Jane Park and Wolfgang Trommer present the advantages for specific biochemical examples in our "applications" section. Derek Marsh's contri- bution on spin-label spectral analysis may be regarded as a summary chapter which touches on several of the detailed spectral analysis methods described in the earlier chapters.

目次

1 Calculating Slow Motional Magnetic Resonance Spectra: A User's Guide.- 1. Introduction.- 2. General Theoretical Considerations.- 2.1. Terms Included in the Liouville and Diffusion Superoperators.- 2.2. Definitions of Coordinate Systems.- 2.3. Basis Vectors and Scalar Product in Operator Space.- 2.4. Construction of the Spin Hamiltonian.- 2.5. Matrix Elements of the Liouville Superoperator.- 2.6. Construction and Matrix Elements of the Diffusion Super-operator.- 2.7. Components of the Starting Vector.- 2.8. The High-Field Approximation.- 3. Magnetic Resonance Line Shapes and the Complex Symmetric Lanczos Algorithm.- 3.1. The Real Symmetric Lanczos Algorithm.- 3.2. The Complex Symmetric Lanczos Algorithm.- 3.3. The Real Symmetric Conjugate Gradients Algorithm.- 3.4. The Complex Symmetric Conjugate Gradients Algorithm.- 3.5. The Continued-Fraction Representation of the Spectral Function.- 3.6. Convergence of the Sequence of Approximate Spectral Functions.- 4. Computational Considerations.- 4.1. Naming Conventions for Files.- 4.2. Array Dimensions and Common Blocks.- 4.3. The Parameter Input Program: LBLL.- 4.4. Spectral Calculations: EPRLL and EPRCGL.- 4.5. Calculation of the Spectral Function: TDLL.- 4.6. "Field Sweep" Conjugate-Gradients Calculations: EPRBL and TNLL.- 4.7. Auxiliary Programs: D200, STVT, MATLST, and VECLST.- 4.8. Porting Programs to Other Machines.- 5. Example Calculations.- 5.1. Model Calculations and General Strategy.- 5.2. Examples from the Literature.- Appendix: Parameters for Example Calculations.- References.- 2 Inhomogeneously Broadened Spin-Label Spectra.- 1. Introduction.- 2. Experimental Determination of Hyperfine Coupling Constants.- 2.1. NMR and ENDOR.- 2.2. ESR Simulation.- 2.3. Solvent Dependence of Hyperfine Coupling Constants.- 3. Gaussian Contributions to Spin-Label Line Shapes.- Example 1.- 4. The Voight Approximation and a One-Parameter Description of Line Shapes.- Example 2.- 5. Line-Shape Comparisons.- 5.1. Unresolved Hyperfine Multiplets.- 5.2. A Universal Nitroxide.- 5.3. Gaussian-Lorentzian Sum Approximations.- 6. Correcting the Linewidth of an Inhomogeneously Broadened Line.- 6.1. Known Hyperfine Coupling Constants.- Example 3. Solvent Dependence of ?HppG.- Example 4. Dependence of ?HppGon Spin-Label Alignment in an Ordered Fluid.- 6.2. Unknown Hyperfine Coupling Constants.- Example 5.- 6.3. Additional Broadening Method.- 7. The Relationship of Linewidth Ratios to Measured Line-Height Ratios.- 7.1. Rotational Correlation Times.- Example 6.- 7.2. Linewidth Ratios Over a Broader Range.- Example 7. Measuring Oxygen Concentrations Using Unresolved Spin-Label Spectra.- 8. Accurate Estimate of Relative Doubly-Integrated Spectral Intensities.- Example 8. A Hypothetical Spin-Label Partitioning Experiment.- 9. Determining Spin-Exchange Frequencies of Spin Labels in Liquids of Low Viscosity.- 10. Deuterated Spin Labels.- 10.1. Gaussian Linewidth of Deuterated Spin Labels.- 10.2. Proton Contamination of a Deuterated Spin Label.- Example 9.- Example 10.- 11. Conclusions.- References.- 3 Saturation Transfer Spectroscopy of Spin Labels: Techniques and Interpretation of Spectra.- 1. Introduction.- 2. Basic Principles of Saturation Transfer ESR.- 2.1. The Spin Hamiltonian.- 2.2. ESR Spectra of Immobilized Spin Labels.- 2.3. The Bloch Equations.- 2.4. Qualitative Explanation of ST-ESR.- 2.5. Spectral Displays of ST-ESR.- 2.6. Analysis of ST-ESR Spectra.- 3. Measurements of Saturation Transfer ESR Spectra.- 3.1. The Resonant Cavity.- 3.2. Effect of Sample on Cavity Properties.- 3.3. Phase-Sensitive Detection.- 3.4. Calibration Procedures.- 3.5. Standard Conditions for ST-ESR Spectroscopy.- 4. Analysis of Saturation Transfer ESR Spectra.- 4.1. Isotropic Motion.- 4.2. Anisotropic Motion.- 5. Future Developments.- References.- 4 Nitrogen-15 and Deuterium Substituted Spin Labels for Studies of Very Slow Rotational Motion.- 1. Introduction.- 2. Overview of Rotational Diffusion Models.- 2.1. Definition of Rotational Correlation Times.- 2.2. Isotropic Rotational Diffusion.- 2.3. Anisotropic Rotational Diffusion in an Isotropic Medium.- 2.4. Uniaxial Rotational Diffusion in an Anisotropic Medium.- 3. Sensitivity of cw-ST-EPR Signals to Rotational Motion.- 3.1. Choice of Signal.- 3.2. Sensitivity to Motion.- 3.3. The Case of Isotropic Motion and Anisotropic Magnetic Tensors.- 3.4. Effects of Anisotropic Motion and Anisotropic Tensors.- 3.5. Geometric Considerations for Analyzing Anisotropic Motion.- 4. Analysis of cw-ST-EPR Data.- 4.1. Isotropic Model Systems.- 4.2. Anisotropic Model Systems.- 4.3. Anisotropic Motional Modeling by Computer Simulations.- 4.4. Overview of Theory for Computation of ST-EPR Spectra.- 5. Studies of Isotropic Motion with Nitrogen-15 Spin Labels.- 5.1. V1EPR Signals as a Function of ?r.- 5.2. Dependence of the V?2Signal on ?r.- 6. Effects of Anisotropic Rotational Diffusion on V?2Spectra.- 6.1. Sensitivity of V?2to Uniaxial Rotation.- 6.2. Effects of Labeling Geometry.- 6.3. Sensitivity of V'2to Anisotropic Rotational Diffusion of Axially Symmetric Ellipsoids in an Isotropic Medium.- 6.4. Relationship between Effective Correlation Times and Anisotropic Motion.- 7. Optimization of Sensitivity of V'2to Motion.- 7.1. Altering Sensitivity to Motion by Selection of v0.- 7.2. Altering Sensitivity to Motion by Selection of vm.- 8. Analysis of Overlapping Motional Species.- 8.1. One Fast and One Slow Motional Component.- 8.2. Two or More Slow Motional Components.- 9. Computer Modeling of Nitrogen-14 V'2Signals.- 9.1. Isotropic Motion Simulations.- 9.2. Anisotropic Motion Simulations.- 9.3. Signal-to-Noise Ratio and Motional Sensitivity of Nitrogen-15 versus Nitrogen-14 Spin Labels.- 10. Saturation Recovery EPR Studies with Nitrogen-15 Spin Labels.- 10.1. Overview of the Experiment.- 10.2. Spectrometer Variables.- 10.3. Strategies for Extraction of Motional Information.- 10.4. Theory of Saturation Recovery.- 10.5. Pseudosecular Terms.- 10.6. Isotropic Brownian Motion-Secular Terms Only.- 10.7. Results of Calculations of SR Curves for Isotropic Motion.- 10.8. Results of Calculations of SR Curves for Nonaxial Tensors.- 10.9. Effects of Pseudosecular Terms.- 10.10. Pseudosecular Terms using Nitrogen-14.- 10.11. Population Analysis: An Estimate of Amplitudes.- 11. Conclusions.- References.- 5 Experimental Methods in Spin-Label Spectral Analysis.- 1. Introduction.- 2. Inhomogeneous Broadening.- 3. Fast Rotational Motion.- 4. Slow Rotational Motion.- 5. Anisotropic Rotation: Lipids/Membranes.- 6. Spin-Spin Interactions and Lateral Diffusion.- 6.1. Spin-Spin Exchange.- 6.2. Translational Diffusion and Bimolecular Collision Rate.- 6.3. Dipolar Spin-Spin Broadening.- 6.4. Separation of Exchange and Dipole-Dipole Interactions.- 7. Lipid-Protein Interactions.- 7.1. Spectral Subtraction/Addition.- 7.2. Measurements at 35 GHz.- 7.3. Analysis of Lipid-Protein Association.- 7.4. Two-Site Exchange Simulations.- 8. Saturation Transfer ESR.- 8.1. Power and Modulation Calibration and the Effects of Sample Shape, Size, and Dielectric Absorption.- 8.2. Anisotropic Rotation.- 8.3. Integral Method: Multicomponent Spectra.- 8.4. Dispersion Spectra: Difference Spectroscopy.- References.- 6 Electron-Electron Double Resonance.- 1. Introduction.- 1.1. Definitions and Background.- 1.2. Historical Overview.- 2. Rate Equations.- 3. Spin-Label Relaximetry.- 4. Apparatus.- 5. Applications.- 5.1. Lateral Diffusion in Membranes.- 5.2. Studies Utilizing 14N: 15N Spin-Label Pairs.- 5.3. ELDOR in Cells.- 5.4. Comparison with Spin-Exchange Line Broadening.- 5.5. Further Application of 14N: 15N Methodology.- 6. Future Opportunities.- References.- 7 Resolved Electron-Electron Spin-Spin Splittings in EPR Spectra.- 1. The Scope of Electron Spin-Spin Interactions.- 2. The Nature of Electron Spin-Spin Interactions.- 2.1. Dipolar Interaction.- 2.2. Exchange Interaction.- 2.3. Hamiltonian for Spin-Spin Interaction.- 2.4. Computational Approaches.- 3. Analogies between Nuclear-Nuclear, Electron-Nuclear, and Electron-Electron Spin-Spin Interactions and Long-Range Electron Transfer.- 4. Spin-1/2-Spin-1/2 Interaction.- 4.1. Spin-Spin Splitting.- 4.2. Half-Field Transitions.- 4.3. Geometrical Information.- 5. Spin 1-Spin 1/2.- 6. Spin 3/2-Spin 1/2.- 7. Spin 5/2-Spin 1/2.- 7.1. Mn(II) Interacting with S= 1/2.- 7.2. High-Spin Fe(III) Interacting with S= 1/2.- 8. Spin 7/2-Spin 1/2.- 9. Chemical Properties Revealed via Spin-Spin Interactions.- 9.1. Kinetics of Ligand Exchange for Cu(II) i..- 9.2. Coordination Equilibria.- 9.3. Weak Orbital Overlaps.- 10. Spin-Spin Interactions in Biological Systems.- 10.1. Cobalt(II) - Radical Interaction.- 10.2. Mo(V) Interaction with Fe/S Cluster.- 10.3. Iron-Nitroxyl Interaction.- 10.4. Nitroxyl-Nitroxyl Interaction.- 11. Exchange Interaction through Multiatom Linkages.- 12. Quantitative EPR Measurements.- 13. Summary and Prognosis.- References.- 8 Spin-Label Oximetry.- 1. Introduction.- 2. Physics.- 2.1. Bimolecular Collisions.- 2.2. Magnetic Interactions.- 2.3. The Absolute T1Method.- 2.4. The Absolute T2Method.- 3. Experimental Methods.- 3.1. TPX Gas-Exchange Sample Cell.- 3.2. T1Sensitive Methods.- 3.3. T2(Linewidth-Sensitive) Methods.- 4. Applications.- 5. Future Opportunities.- References.- 9 Chemistry of Spin-Labeled Amino Acids and Peptides: Some New Mono- and Bifunctionalized Nitroxide Free Radicals.- 1. Introduction.- 2. Spin Labeling of Amino Acids and Peptides.- 2.1. Reagents for Labeling at the Amino Terminal.- 2.2. C-Terminal Spin-Labeled Amino Acids and Peptides.- 2.3. Amino Acids and Peptides Labeled in the Side Chain.- 3. Nitroxide Amino Acids.- 3.1. Imidazolinyl Nitroxide Amino Acids.- 3.2. Pyrrolidine Nitroxide Amino Acids.- 3.3. Pyrrolinyl Nitroxide Amino Acids.- 3.4. Piperidinyl Nitroxide Amino Acids.- 4. New Mono- and Bifunctionalized Spin Labels.- 4.1. Reactions with 3-Functionalized-3-Pyrroline-l-Oxyl Derivatives.- 4.2. Cross-Linking Spin-Label Reagents.- 4.3. Spin-Labeled Pyrrolidine-1-Oxyl Fatty Acids.- 5. Experimental Procedures for Preparation of Some Pyrroline and Pyrrolidine Nitroxide Spin Labels.- References.- 10 Nitroxide Radical Adducts in Biology: Chemistry, Applications, and Pitfalls.- 1. Introduction.- 2. Halogenated Compounds.- 2.1. Carbon Tetrachloride.- 2.2. Halothane.- 2.3. Others.- 3. Lipid Peroxidation.- 3.1. Linoleic Acid.- 3.2. Methyl Linoleate.- 3.3. Arachidonic Acid.- 3.4. Lipid Peroxyl and Alkoxy Radicals.- 4. Hemoprotein-Organic Hydroperoxides.- 5. Sulfur-Centered Radicals.- 5.1. Sulfur Dioxide, Bisulfite, Sulfite, and Sulfate.- 5.2. Thiols.- 6. Pyridinyl Radicals.- 7. Hydrazines.- 8. Oxygen-Centered Radicals.- 9. Aldehydes.- 9.1. Glyceraldehyde and Other Monosaccharides.- 9.2. Malonaldehyde and Acetylacetone.- 10. Lignin Model Dimers.- 11. 3-Methylindole.- 12. Indole Acetic Acid.- 13. Ethanol.- 14. Tryptophan.- 15. Nitrobenzyl Chlorides.- 16. Azide and Cyanide.- 17. Styrene.- 18. Spin Traps as Enzyme Inhibitors.- 19. Spin Traps as Enzyme Substrates.- 20. In VivoSpin Trapping and Spin Trapping in Cells.- 20.1. Spin Trapping in Cells.- 20.2. Site-Directed Spin Traps.- 20.3. In VivoSpin Trapping.- 21. Spin Adduct Identification.- 21.1. Isotope Methods.- 21.2. Isolation and Identification by HPLC, GC, and MS.- 22. Spin Adduct Imposters.- 23. Summary.- References.- 11 Advantages of 15N and Deuterium Spin Probes for Biomedical Electron Paramagnetic Resonance Investigations.- 1. Introduction.- 2. Maleimide Spin Label (DMSL or 15N,DMSL): A Covalent Ligand for Sulfhydryl Groups of Proteins.- 2.1. Advantages of Deuterated Maleimide Spin Label (DMSL) for Studies of Proteins.- 2.2. Advantages of Doubly Substituted 15N,Deuterated Maleimide Spin Label (15N,DMSL).- 2.3. Advantages of 15N,Deuterated Maleimide Spin Label (15N,DMSL) for Studies of Soluble and Membrane-Bound Enzymes.- 2.4. Future Applications.- 3. Coenzyme Spin Labels: Studies on Coenzyme Binding to Enzymes and Catalytic Mechanisms.- 3.1. Comparison of Spin-Labeled Maleimide Inhibitors (DMSL and 15N,DMSL) and Coenzyme Analogs (SL-NAD+) for EPR.- Studies of Enzymes.- 3.2. The Evaluation of Binding of Isotopically Substituted N6-SL- NAD+or C8-SL-NAD+Using Lactic Dehydrogenase.- 3.3. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) and SL-NAD+Binding with Unusual Electron-Electron Dipolar Interactions (Splitting of Peaks).- 3.4. Interactions of N6-(D17M)SL-NAD+with GAPDH Bound to Band-3 Protein of Erythrocyte Membranes.- 3.5. Binding of Deuterated and 15N,Deuterated-SL-NADH Analogs to ss-Hydroxybutyrate Dehydrogenase (BDH).- 3.6. Binding of Spin-Labeled Adenine Nucleotides to Dehydrogenases and F1ATPase.- 3.7. Future Applications.- 4. Advantages of 15N, and 15N,Deuterated Stearic Acid and Cholestane Spin Labels for Evaluation of Motion of Lipids in Membranes.- 4.1. Improved Spectral Sensitivity of Rapidly Tumbling 15N and 15N,Deuterium Substituted Stearic Acid and Cholestane Analogs.- 4.2. Advantages of 15N and 15N,Deuterated Stearic Acid Spin Labels for Studies on Binding to Proteins.- 4.3. Improved Spectral Analysis of Lipid Motion in Erythrocyte (RBC) Membranes with 15N-5-NS and (15N,D12)-5-NS.- 4.4. Investigation of Erythrocyte Abnormalities Using 15N-5-NS.- 4.5. Studies of Collision Frequency and Vertical Fluctuations of 14N and 15N Spin-Labeled Pairs of Fatty Acids in Membranes Using ELDOR Spectroscopy.- 4.6. Future Applications.- References.- 12 Magnetic Resonance Study of the Combining Site Structure of a Monoclonal Anti-Spin-Label Antibody.- 1. Introduction.- 2. Amino Acid Composition of the Antibody Combining Site.- 3. Distance Determination.- 4. Contributions of Heavy and Light Chains to the Combining Site.- 5. Determination of Short Distances.- 6. Conclusion.- References.- Appendix Approaches to the Chemical Synthesis of l5N and Deuterium Substituted Spin Labels.- 1. Introduction.- 2. Synthesis of Deuterated and 15N,Deuterated Maleimide Spin Labels (DMSL and 15N-DMSL).- 3. Synthesis of Deuterated and 15N,Deuterated Adenine Nucleotide Derivatives.- 3.1. Synthesis of N6-(D17)SL-AMP (10a) or N6-(15N,D17)SL-AMP (10b).- 3.2. Synthesis of C8-(D17)SL-AMP (12a) or C8(15N,D17)SL-AMP (12b).- 3.3. Synthesis of N6-SL-ATP (14).- 3.4. Synthesis of C8-(15N,D17)SL-ATP.- 3.5. Synthesis of N6- or C8-SL-Analogs of AMPPCP or AMPPNP.- 3.6. Synthesis of a Mixture of 2?- and 3?-(15N,D13)SL-ATP (17).- 3.7. Synthesis of N6-SL-ADP and C8-SL-ADP.- 3.8. Synthesis of N6-(D17)SL-NAD+ (18a) and N6-(15N,D17)SL- NAD+(18b).- 3.9. Synthesis of C8-(D17)SL-NAD+and C8-(15N,D17)SL-NAD+.- 4. Synthesis of 15N and 15N,Deuterated Stearic Acid Spin Labels.- 4.1. Synthesis of 15N-5-Doxylstearic Acid Spin Label (26).- 4.2. Synthesis of 15N-12-Doxylstearic Acid-d41(27).- 5. Conclusions.- References.- of Previous Volumes.
巻冊次

v. 9 ISBN 9780306433412

内容説明

We are pleased to present Volume 9 of our highly successful series, which now celebrates 12 years of providing the magnetic resonance community with topical, authoritative chapters on new aspects of biological magnetic resonance. As always, we try to present a diversity of topic coverage in each volume, ranging from applications of in vivo magnetic resonance to more fundamental aspects of electron spin resonance and nuclear magnetic resonance. Philip Yeagle presents an eagerly awaited chapter on 31p NMR studies of membranes and membrane protein interactions. Alan Marshall has con tributed two chapters to the volume: one, with Jiejun Wu, describes magnetic resonance studies of 5S-RNA as probes of its structure and conformation; the secon"

「Nielsen BookData」 より

関連文献: 26件中  1-20を表示

  • 1 / 2
  • Measuring oxidants and oxidative stress in biological systems

    Lawrence J. Berliner, Narasimham L. Parinandi editors

    Springer Nature Switzerland c2020 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 34

    所蔵館2館

  • Future directions in metalloprotein and metalloenzyme research

    Graeme Hanson, Lawrence Berliner, editors

    Springer International Publishing c2017 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 33

    所蔵館1館

  • Electron spin resonance (ESR) based quantum computing

    Takeji Takui, Lawrence Berliner, Graeme Hanson, editors

    Springer c2016 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 31

    所蔵館2館

  • fMRI : from nuclear spins to brain functions

    edited by Kâmil Uludağ, Kâmil Uğurbil, Lawrence Berliner

    Springer 2015 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 30

    : hbk.

    所蔵館3館

  • Protein NMR : modern techniques and biomedical applications

    edited by Lawrence Berliner

    Springer c2015 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 32

    : hbk.

    所蔵館4館

  • Metals in biology : applications of high-resolution EPR to metalloenzymes

    Graeme Hanson, Lawrence Berliner, editors

    Springer c2010 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 29

    : hbk.

    所蔵館2館

  • High resolution EPR : applications to metalloenzymes and metals in medicine

    Graeme Hanson, Lawrence Berliner, editors

    Springer c2009 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 28

    hbk.

    所蔵館2館

  • ESR spectroscopy in membrane biophysics

    Marcus A. Hemminga and Lawrence J. Berliner

    Springer c2007 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 27

    : hbk

    所蔵館5館

  • Ultra high field magnetic resonance imaging

    Pierre-Marie Robitaille, Lawrence Berliner

    Springer c2006 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben 26

    所蔵館2館

  • Computational and instrumental methods in EPR

    [edited by] Christopher J. Bender and Lawrence J. Berliner

    Springer c2006 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 25

    所蔵館8館

  • Methodology, instrumentation, and dynamics

    edited by Sandra R. Eaton, Gareth R. Eaton, and Lawrence J. Berliner

    Kluwer Academic/Plenum Publishers 2005 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 24. Biomedical EPR ; pt. B

    v. 24 , v. 24 e-book

    所蔵館6館

  • Free radicals, metals, medicine, and physiology

    edited by Sandra R. Eaton, Gareth R. Eaton, and Lawrence J. Berliner

    Kluwer Academic/Plenum Publishers 2005 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 23. Biomedical EPR ; pt. A

    v. 23 , v. 23 e-book

    所蔵館7館

  • Very high frequency (VHF) ESR/EPR

    edited by Oleg Y. Grinberg and Lawrence J. Berliner

    Kluwer Academic/Plenum Publishers c2004 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 22

    所蔵館4館

  • EPR : instrumental methods

    edited by Lawrence J. Berliner and Christopher J. Bender

    Kluwer Academic/Plenum publishers c2004 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 21

    所蔵館4館

  • In vivo EPR (ESR) : theory and application

    edited by Lawrence J. Berliner

    Kluwer Academic/Plenum Publishers c2003 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 18

    所蔵館7館

  • Protein NMR for the millennium

    edited by N. Rama Krishna and Lawrence J. Berliner

    Kluwer Academic/Plenum Publishers c2003 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 20

    所蔵館11館

  • Distance measurements in biological systems by EPR

    edited by Lawrence J. Berliner, Gareth R. Eaton and Sandra S. Eaton

    Kluwer Academic/Plenum Publishers c2000 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 19

    所蔵館10館

  • Structure computation and dynamics in protein NMR

    edited by N. Rama Krishna and Lawrence J. Berliner

    Kluwer Academic/Plenum Publishers c1999 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 17

    所蔵館14館

  • Modern techniques in protein NMR

    edited by N. Rama Krishna and Lawrence J. Berliner

    Kluwer Academic/Plenum c1998 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 16

    所蔵館13館

  • In vivo carbon-13 NMR

    edited by Lawrence J. Berliner and Pierre-Marie Robitaille

    Kluwer Academic, Plenum Publishers c1998 Biological magnetic resonance / edited by Lawrence J. Berliner and Jacques Reuben v. 15

    所蔵館7館

  • 1 / 2

詳細情報

  • NII書誌ID(NCID)
    BA00368883
  • ISBN
    • 0306389819
    • 0306402645
    • 0306406128
    • 0306409682
    • 0306412934
    • 0306416832
    • 030642455X
    • 030643072X
    • 0306433419
  • LCCN
    78016035
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    New York
  • ページ数/冊数
    v.
  • 大きさ
    24 cm
  • 分類
  • 件名
ページトップへ