Nonlinear Analysis
of R/C Roof-Type Circular Cylindrical Shells
Stiffened with a Rib

by
Kazuhiko MASHITA, Ken NAKABAYASHI and Jong Moon CHOI
(Received on Mar. 20, 1991)

Abstract

The main purpose of this paper is to investigate the nonlinear behaviors of reinforced concrete roof-type circular cylindrical shells stiffened with a rib, both theoretically and experimentally.

In this analysis, two different types of supporting conditions are considered. One is a four-point simply supported-type shell and the other is a four-point supported cantilever-type shell. A stiffening rib on the overall shell structures are investigated.

The experimental study is conducted on reinforced micro-concrete specimens. Circular cylindrical small scale models with different boundary stiffnesses and different point-supporting conditions are used. These specimens are loaded by uniform vertical load to failure.

The theoretical study is conducted using material and geometrical nonlinear finite element analysis including concrete cracking and tension stiffening effects. Degenerate thick shell elements employing a layered discretization through the thickness are adopted. A Drucker-Prager type yield function is used in this analysis and a maximum tensile stress criterion is considered.

The critical loads and cracking patterns are obtained by FEM calculations and those results are compared to ones in the experimental study. The interactions between the shell and the stiffening members, and the effects of both stiffening members and point-supporting conditions on the overall behaviors of the structures are obtained.

Keywords: circular cylindrical shell, reinforced concrete, ultimate strength, cracking pattern, finite element method, failure experiment, buckling load, stiffening rib
補強リブを有する鉄筋コンクリート屋根形円筒シェルの非線形解析

1. まえがき

鉄筋コンクリート屋根形円筒シェルは数多く設計されてきたが、いずれも弾性設計を中心に行われてきた。今後、より精度の高い設計を行うために、力学的非線形特性を明確にする必要がある。近年、電子計算機及び解析手法の発展により、解析的解析が可能となった。これらによる数値解析の有効性を検討する研究が発表されているが[1,2]。その内容の複雑さのためにいまだ十分ではない。本研究においては前回報告を行った文献に引き続き、鉄筋コンクリート屋根形円筒シェルの境界補剛面付及び補剛リブの影響を検討するため、実験的及び理論的に研究を行ったので、その結果を報告する。実験的解析においては、マイクロ・コンクリート供試体を作製し破壊実験を行った。理論的解析においては、非線形有限要素解析を行うと共に、IAAS（国際シェル学会）の鉄筋コンクリートシェル座屈指針案による検討を行った。RCシールの剛性に重要な影響を与える要因として、今回対象とした解析条件は、線形と線形ブリッジの剛性変化、支持点の変化（ピン及びローラー）を非線性挙動及び耐力に関する検討を行った。

2. 実験概要

本実験において、境界及び支持条件の異なる4タイプのマイクロ・コンクリート供試体を作製し、水平面における等分布荷重を行い、破壊に至るまでの力学的特性を検討した（Fig. 2.1, Table 2.1）。屋根形円筒シェル供試体は過去の文献を参考として[3,4]、水平幅が平面内寸法112cm（L1）×112cm（L2）であり、ライズ・スパン比（L2/L1）は1/5とした。これは全開角87.1度であり曲率半径81.2cmに相当する。設計シェル厚は8mmとし、1.2φの鉄線を20mm間隔に配置した。境界補剛部材（線アーチ及び線ブリッジ）及び補剛リブは異形鉄筋D3を

Photo 2.1 Shell specimen (T8DRR) under simulated uniform loading.

Table 2.1 Test specimens.

<table>
<thead>
<tr>
<th>Specimens</th>
<th>Beam (D1)</th>
<th>Rib</th>
<th>Support (P1)</th>
<th>Point (P2)</th>
<th>Type (M1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T8DRR</td>
<td>4.0</td>
<td>4.0</td>
<td>Corner</td>
<td>Roller</td>
<td>MA1</td>
</tr>
<tr>
<td>T8DRR</td>
<td>8.0</td>
<td>4.0</td>
<td>Corner</td>
<td>Roller</td>
<td>MB1</td>
</tr>
<tr>
<td>T4OCPP</td>
<td>4.0</td>
<td>0.0</td>
<td>Cantilever</td>
<td>Pin</td>
<td>MA2</td>
</tr>
<tr>
<td>T4DCR</td>
<td>4.0</td>
<td>4.0</td>
<td>Cantilever</td>
<td>Roller</td>
<td>MB2</td>
</tr>
</tbody>
</table>

(*1) D1: Depth of boundary members (cm).
(*2) D2: Depth of a stiffening rib (cm).
(*3) P1: Supporting type.
 Corner: Four-point simply supported type at corners.
 Cantilever: Four-point supported cantilever-type.
(*4) P2: Type of point-supporting conditions.
(*5) M1: Type of material and geometrical conditions.
 MA1, MA2, MB1 and MB2: The material and geometrical conditions correspond to each experimental data.

主筋とし、あらら筋は、1.2φの鉄線を20mm間隔に配置した。実験供試体は油圧ポンプ及び油圧ラムを用いて等分布荷重を行った。分布荷重は64点の集中荷重から
なるトーナメント方式を採用した。支持形式として、隅角部4点単純支持タイプ及び4点片持支持タイプの2種類を対象とした。隅角部4点単純支持タイプにおいては、シェル中央部指向線方向に補剛リブを設け、ローラー支持を対象として線や及び綫アーチの剛性の異なる2種類、すなわち梁をせ4cm（T4DARR）及び8cm（T8DARR）の2種類の供試体を作製した。一方、4点片持支持タイプにおいては線や及び綫アーチの梁をせを4cmとし、補剛リブなしに支持（T4OC）及び補剛リブ付きローラー支持（T4DCR）の供試体を作製した。支持点のローラー支持は1支持当り10個の6つピーリングで支持したものであり、ピーリングはシェルの指示線方向の外方向水平移動を拘束したものである（Fig.2.1）。

T4DARR及びT4OCは同時に打設を行ったため、材料定数は同一定である（Table 2.2: MA1、MA2）。同様にT8DARRとT4DCRも同時に打設を行ったため材料定数は等しい（Table 2.2: MB1、MB2）。材料形状タイプMA1とMA2は、タイプMB1とMB2よりヤング係数、終局強度及び圧縮強度が低い値となっている。破壊実験終了後、シェル面16点の板厚を測定した結果、これら平均値（施工シェル厚）は設計シェル厚（t0=0.8cm）よりわずかに多少大きかった（Table 2.2）。

Table 2.2 Material and geometrical conditions.

<table>
<thead>
<tr>
<th>Type</th>
<th>E0 (×10^8 kgf/cm²)</th>
<th>F0 (kgf/cm²)</th>
<th>F1 (kgf/cm²)</th>
<th>T (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA1</td>
<td>2.38</td>
<td>0.202</td>
<td>642.0</td>
<td>33.9</td>
</tr>
<tr>
<td>MB1</td>
<td>2.79</td>
<td>0.204</td>
<td>729.5</td>
<td>48.6</td>
</tr>
<tr>
<td>MA2</td>
<td>2.38</td>
<td>0.202</td>
<td>642.0</td>
<td>33.9</td>
</tr>
<tr>
<td>MB2</td>
<td>2.79</td>
<td>0.204</td>
<td>729.5</td>
<td>48.6</td>
</tr>
</tbody>
</table>

(6) E0: Young’s modulus of concrete (×10^8 kgf/cm²).
(7) F0: Poisson’s ratio of concrete.
(8) F1: Concrete ultimate compressive strength (kgf/cm²).
(9) F2: Concrete ultimate tensile strength (kgf/cm²).
(10) T: Thickness of shell (cm).

The Young’s moduli of steel bar 1.2φ and D3 are 1.973×10^4 (kgf/cm²) and 2.180×10^4 (kgf/cm²), respectively and the yield stresses of steel bar 1.2φ and D3 are 3650.0 (kgf/cm²) and 3157.5 (kgf/cm²), respectively (Unit: 1 kgf/cm²=9.8 N/cm²).

3. 解析概要

3.1 有限要素解析

(1) シェル要素

本有限要素解析で使用した要素は板厚方向に弾性化を行う逆換算厚肉構造シェル要素である。変位関数は2次半格ラグランジュ型 (Lagrange) を採用した。要素の節点は

\[N_k = \frac{1}{4} (1 + \xi \eta) (\xi \eta + \xi \eta - 1) \]

中間節点

\[N_k = \frac{\xi^2 + \eta^2}{2} - (1 + \xi \eta) (1 - \xi^2) \]

シェル中央節点

\[N_k = (1 - \xi^2) (1 - \eta^2) \]

ただしξ、ηは無次元化直交曲線座標である。次にアイソパラメトリック要素の中央面上k節点におけるx、y、z方向の変位U_k、V_k、W_kとX、Y軸まわりの回転β_k、γ_kが要素内任意点の変位U、V、Wと下式が成立する。

\[
\begin{bmatrix}
U \\
V \\
W
\end{bmatrix}
= \sum_{k=1}^{n} N_k \begin{bmatrix}
U_k \\
V_k \\
W_k
\end{bmatrix}_{mid} + \sum_{k=1}^{n} \sum_{i=1}^{6} N_k \xi_i \begin{bmatrix}
V_{x0} - V_{xk} \\
V_{y0} - V_{yk} \\
V_{z0} - V_{zk}
\end{bmatrix} \begin{bmatrix}
\xi_k \\
\eta_k
\end{bmatrix}
\]

上記要素の剛性評価において、ガウス積分法を使用した。本積分において変曲関関数は通常積分、せん断及び薄剛性に関しては減少積分を採用する誤点積分法を用いた。要素内の応力は板厚方向の応力力を積分して求めた。

直応力

\[N_k = \int_{-\lambda}^{\lambda} \sigma z x dx = \frac{h}{2} \sum_{i=1}^{n} \sigma_i x^k d\lambda \]

曲げ応力

\[M_k = \int_{-\lambda}^{\lambda} \sigma_x z x dx = -h \frac{h}{2} \sum_{i=1}^{n} \sigma_i x^k d\lambda \]

ただしhは板厚であり、板厚方向の無次元化座標である。

(2) 材料非線形

材料のモデル化において、コンクリートの圧縮挙動に関連して、塑性流れを考慮した。降伏基準はドラッカー・プラスラー型 (Drucker-Prager) を採用した。二軸応力状態におけるコンクリートの降伏基準はクッパ－(Kupfer) の実験結果をもとに決定した抄。この基準は応力成分(S) の項で下式の様に表現することができる。

\[f(s) = [1.355 (S_{xy}^2 + S_{yz}^2 + S_{xz}) + 3.0 (S_{xx}^2 + S_{xy}^2 + S_{xz}^2)]^{1/2} = S_0 \]

\[0.355 S_0 (S_{xx} + S_{yy})^{1/2} = S_0 \]
ここで S_0 は一軸圧縮試験より求めたコンクリートの終局圧縮応力度 f_s を採用する。コンクリートの圧縮条件は全歪度 e_0 の項を表すと下式となる。

\[
\sigma = 1.35\left(e_{ax}^2 + e_{ay}^2 - e_{ax}e_{ay} \right) + 3.0\left(e_{ax}^2 + e_{ay}^2 + e_{az}^2 \right) + 0.355\left(e_{ax} + e_{ay} \right) = e_0^2
\]

(3.8)

ここで e_0 は終局歪である。本計算においてコンクリートの終局圧縮歪は 0.003 とした。コンクリートの引張挙動を表すために引張切断すなわちひび割れ、及び引張剛性を考慮した。ひび割れ後のコンクリートの引張剛性を考慮する場合、0.002 を境界の範囲内でゼロから 0.6 である応力を逆比例させた値を計算した。ただし f_s はコンクリートの終局引張強度である。ひび割れ後のコンクリートのせん断剛性に対しては、分布ひび割れモデルにおける骨材の相成合い、鉄筋のダボ作用を考慮した修正せん断弾性係数を採用した。一方、ひび割れの入ったコンクリートでは次のようになる。

\[
G = G^0 / e_0
\]

(3.9)

表10にひび割れの入ったコンクリートに対しては次式となる。

\[
G = G^0 / e_0
\]

(3.10)

鉄筋等価に板厚の弾性とし、弾性性応力歪関係をモデル化するためにバイリニア型（Bilinear）を採用した。

（3）形状非線形

形状非線形を表すために局部座標系における面内方向の変位 U, V の導関数が微小であるというフォン・カーマン（Von Karman）の仮定に従うとグリーン・ラグランジェ (Green Lagrange) 形式 (3.11) で表される。

本解析においては上式の変位歪関係式を採用した。形状非線形解析は退化等弾性シェル要素に対してトータル・ラグランジュ法 (Total Lagrangian Approach) に従って計算を行った。

3.2 計算概要

本数値計算において、対称条件を使用し、1/4 シェル面を 4 × 4 分割とした。板厚はコンクリートに対して 10 層等分割、ならびに鉄筋に対して各方向 2 層分割からなる層層シェル要素によりモデル化を行った。縦び、縦に及び補剛リブはシェル面の分割に対応してそれぞれモデル化を行った。今回対象とした数値モデルは Table 3.1 に示したごとく実験供試体を考慮してそれぞれ条件の異なる 10 種類である。補剛リブを設けたタイプ 2 種 (M4DR, M4DP) の計算を行った。上記タイプの材料及び形状定数は実験供試体 T4D4R の定数 (Table 2.1: MA1) と同一とした。同様に実験供試体 T8DR, T4OC, T4DCR と同じ条件でそれらの条件をそれぞれ数値計算モデルを用いて計算を行った。これからの 3 タイプの数値計算モデルにおける支持条件、すなわちビンとローラーを入れかえたモデル M8DPP, M4OCR, M4DCP の計算を含めた。

<table>
<thead>
<tr>
<th>Table 3.1 Mathematical models.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models</td>
</tr>
<tr>
<td>M40RR</td>
</tr>
<tr>
<td>M40PP</td>
</tr>
<tr>
<td>M4DR</td>
</tr>
<tr>
<td>M4DP</td>
</tr>
<tr>
<td>M8DRR</td>
</tr>
<tr>
<td>M8DPP</td>
</tr>
<tr>
<td>M4OCR</td>
</tr>
<tr>
<td>M4OCP</td>
</tr>
<tr>
<td>M4DCR</td>
</tr>
<tr>
<td>M4DCP</td>
</tr>
</tbody>
</table>

The signs (+1 to +5) are the same as described in Table 2.1.

進立方程式の解は修正ニュートン・ラグランジュ法

— 78 —
（modified Newton-Raphson method）により反復計算を行い、各荷重段階ごとにひび割れ形態を検討して水平方向及び直角方向の変形をパラメータとし、収束判定基準を2.5％以内として計算を行った。各歪及び各応力、並びにひび割れの判定はガウス復点法において行った。

3.3 鉄筋コンクリートシェル座屈解析

IASS（国際シェル学会）鉄筋コンクリートシェル座屈指針案において14、15、16、鉄筋コンクリート上部弾性座屈荷重を求めることが、ひび割れを考慮した鉄筋コンクリートの上部弾性座屈荷重を求める計算法が提案されている。しかしこの過去の文献においてシェル構造の実験データが十分でないため、今後この計算方法を検討を加える必要がある。

本計算においてはこの指針案に従い計算を行うと共にこの計算に重要性を与える初期不整乱（II）に注意して検討を加えた、P**、P**、P**、P**をは3.1節におけるシェル要領に従い有限要素法を用いて弾性座屈解析を行って求めた。線形固定値解析においてサブスペース・テストレーション法（Subspace Iteration method）により計算を行った。初期不整乱（II）の値を変化させ実験供体の終局荷重に応じて数値計算モデルのP**、P**、P**、P**を求めると共に、実験供体の中央面の初期不整乱を測定し比較検討を行った。

4. 解析結果及び考察

Table 4.1 に各タイプごとのシェル面の初ひび割れ荷重 （P），境界補強部材及びりびにおける初びび割れ荷重 （P），シェルの終局荷重（P），及びこれらの比 （P/P，P/P）を示した。シェル面の初びび割れ荷重に対しては、T4OCR以外は実験値と計算値との対応が認められた。境界補強材及びりびの初びび割れ荷重に関しては、T8DRR、T4OCR 以外の対応が示された。上記で相関の認められるタイプに関しては、いずれも剛性が高いケースであるが、計算値より実験値の方が小さい値を示した。終局荷重においてはT4OCR以外は良好な対応が認められる。片持コーラー支承において、M4DCRの終局耐力はM4OCRの値の2倍であることが示され、M4OCR、M4OCR 以外はいずれもシェル面より境界補強材の方が低く荷重でひび割れが発生している。比率（P/P）を比較すると、片持支持においてこの割合が大きく、特にビン支持（M4OCR、M4DCR）において大きなことが示された。

Table 4.2 に無筋コンクリートシェルの上部弾性座屈荷重をP**、P**、ひび割れを考慮した鉄筋コンクリートシェルの上部弾性座屈荷重をP**、P**、P**、P**、並びに初期不整乱（II）を示した。ただし初期不整乱の値は曲率半径（R）= 81.2cm）との比（R/A）及び施工シェル厚（T）と比（II/T）として表に示した。Table 4.2 の座屈荷重を比較すると、初期不整乱と施工シェル厚の比（II/T）は8～36%程度であることが示された。一方実験値においてはこの比が12～44%であった。

Fig. 4.1 に荷重変位曲線の包絡線を示した。Fig. 4.1 (a) は隅角部4点単純支持におけるシェル中央部の鉛直変位を示した。この図より実験値は計算値より多少低い値を示しているが、変形特性は対応している。実験及び計算結果から境界補強材の剛性の効果は顕著である。

Fig. 4.1 (b) に片持支持における片持支持先端中央部の

<table>
<thead>
<tr>
<th>Table 4.1 Total load intensities until failure.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>T4DRR</td>
</tr>
<tr>
<td>T8DRR</td>
</tr>
<tr>
<td>T4OCR</td>
</tr>
<tr>
<td>T4DCR</td>
</tr>
<tr>
<td>M4ORR</td>
</tr>
<tr>
<td>M4OPP</td>
</tr>
<tr>
<td>M4DRR</td>
</tr>
<tr>
<td>M4DPP</td>
</tr>
<tr>
<td>M8DRR</td>
</tr>
<tr>
<td>M8DPP</td>
</tr>
<tr>
<td>M4OCR</td>
</tr>
<tr>
<td>M4OCP</td>
</tr>
<tr>
<td>M4DCR</td>
</tr>
<tr>
<td>M4DCP</td>
</tr>
</tbody>
</table>

(1) P: Total load at first visible crack on shell surface (kgf).
(2) P: Total load at first visible crack on stiffening members such as edge beams, edge arches and a rib (kgf).
(3) P: Ultimate load (kgf).
(4) P/P: Ratio of total load at first visible crack on shell surface to ultimate load.
(5) P/P: Ratio of total load at first visible crack on stiffening members to ultimate load.

(Unit: 1 kgf=9.8 N)
補剛リブを有する鉄筋コンクリート階段形円筒シェルの非線形解析

Table 4.2 Critical load.

<table>
<thead>
<tr>
<th>Type</th>
<th>PA (+6)</th>
<th>PB (+7)</th>
<th>A (+8)</th>
<th>II/T (+9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4DRR</td>
<td>(1150)</td>
<td>271</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>T5DRR</td>
<td>(1740)</td>
<td>271</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>T4OCR</td>
<td>(5400)</td>
<td>203</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>T4OCR</td>
<td>(1070)</td>
<td>812</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>M4DRR</td>
<td>1589</td>
<td>1147</td>
<td>980</td>
<td>0.08</td>
</tr>
<tr>
<td>M5DRR</td>
<td>35790</td>
<td>1782</td>
<td>260</td>
<td>0.36</td>
</tr>
<tr>
<td>M4OCR</td>
<td>38360</td>
<td>5328</td>
<td>360</td>
<td>0.25</td>
</tr>
<tr>
<td>M4OCR</td>
<td>2610</td>
<td>1058</td>
<td>460</td>
<td>0.26</td>
</tr>
</tbody>
</table>

(+) PA = $P_{\text{lim,cr}}$: Upper critical load of a concrete shell of linear elastic behavior (kgf). (1 kgf = 9.8 N).
(+7) PB = $P_{\text{lim,cr}}$: Upper critical load of a reinforced concrete shell of elasto-plastic behavior according to IASS (kgf). (1 kgf = 9.8 N).
(+8) A = Maximum amplitude of initial imperfection, where R is a shell radius, ie 81.2 cm.
(+9) II/T: Ratio of initial imperfection to actual shell thickness.

Figs. 4.2, 4.3 and 4.4に、隔角部4点単純支持形式の境界補剛材の張せん4 cm及び8 cmの場合を対象として、実験結果と計算結果を対比させてひび割れ分布を示した。実験結果は断面荷重時のひび割れ図を示し、計算結果は主として終局荷重時のひび割れ図を示し、計算結果は主として終局直前の荷重時におけるひび割れ分布を示した。各計算結果に対応して示したひび割れ図はシェルの表面を裏面（同図SSのOSとIS）、シェル補剛部材の表面と裏面（同図SMのOSとIS）を同一図に示した。ローラー支持タイプでは裏面のひび割れが支配的であり、境界ばり剛性の小さい4 cmのタイプでは、シェル面及び境界部材において、かぶりのひび割れ発生が均一に認められる。一方、縦ばり剛性の大きい8 cmのタイプでは、シェル面のひび割れが少ない。ピン支持においては耐力が大幅に増大するとシェル中央部にひび割れが大幅に減少している。補剛リブを設けた場合は耐力が増大し、シェル中央部を含め全体にひび割れが発生しているのでに対し、補剛リブの無い場合はシェル境界付近にひび割れ、及び縦アーチにひび割れが集中している。ひび割れ断面図においては、補剛部材のひび割れ発生状況が示されており、特に縦アーチの両方向ひび割れ域が増大していることが示されている。

Figs. 4.5, 4.6 and 4.7は補剛リブを有する片持支持を対象としてFigs. 4.2, 4.3 and 4.4と同様にひび割れ図を示した。ただし支持形式を考慮してシェル面と補剛部材を表面と裏面を別々に一枚の図に示した。シェル中央部の補剛リブの有無による影響を検討すると、ローラー支持においては耐力が大幅に増大するが、両者ともシェル中央支持点（$x=0.5$, $y=0.1$）を中心にひび割れが発生している。一方ピン支持においては補剛リブの有無により終局耐力にそれほど大きな差は認められないが、補剛リブを設けた場合シェル全面へのひび割れ発生を大幅に抑える効果が認められる。片持先端アーチに関しては、ローラー支持においてひび割れが発生している。ピン支持においてはこのひび割れは非常に少ない。縦ばりのひび割れはローラー支持及びピン支持においてシェル中央支持点にひび割れ発生が集中している。縦ばり補剛部材のひび割れに関しては断面図においても明示されており、Fig. 4.7(a)より補剛リブを持たないピン支持における中央部の大規模な両方向ひび割れ発生が示された。

5. まとめ

本解析結果により、ライズ・スパン比1/5程度の鉄筋コンクリート階段形円筒シェルに関して以下の結論を得た。本研究で用いた非線形有限要素解析結果を実験結果と比較することにより、シェル面及びシェル補剛部材の
補剛リブを有する鉄筋コンクリート屋根形円筒シェルの非線形解析

図4.5 補剛リブを有する鉄筋コンクリート屋根形円筒シェルの非線形解析の図

図4.6 補剛リブを有する鉄筋コンクリート屋根形円筒シェルの非線形解析の図

図4.7 補剛リブを有する鉄筋コンクリート屋根形円筒シェルの非線形解析の図
初びび割れ荷重並びに終局耐力を比較的良好な精度で予測することが可能となり，本解析法の有効性が示された。

びび割れ分布形においても実験値と計算値は良好な対応が示された。シェル中央部織維方向の補剛リブがシェルの耐力に及ぼす効果が明示された。特に片持ちコーナー支持における計算結果ではその耐力が2倍であることが示された。境界補剛部材の剛性を増大させることにより，シェル面の初びび割れ荷重及び終局耐力を大幅に増大させる効果が認められた。

コーナーとビン支持の比較において，ビン支持シェルの剛性が著しく高いことが示され，その割合はシェルの支持形式及び補剛リブの有無によりかなり異なることが示された。

謝辞 本研究において，東海大学電子計算センターNEC SX-1を使用させていただきました。

参考文献
1) 真下和彦，崔鍾文，仲林健：日本建築学会大会幹事論文集，鉄筋コンクリート屋根形円筒シェルの終局耐力解析一その1。終局耐力，(1990)，1205-1206。
2) 崔鍾文，真下和彦，仲林健：日本建築学会大会幹事論文集，鉄筋コンクリート屋根形円筒シェルの終局耐力解析一その2。びび割れ解析，(1990)，1207-1209。
3) 仲林健，真下和彦，崔鍾文：日本建築学会大会幹事論文集，上下動地震動を受けるRC筒形シェルの非線形応答解析，(1990)，1213-1214。
4) 中村博志，高山誠，原隆，加藤史郎：日本建築学会大会幹事論文集，形状初期不整を有するRC円筒シェルの最大耐力について一その1。完全形状の場合，(1990)，1209-1210。
5) 高山誠，中村博志，原隆，加藤史郎：日本建築学会大会幹事論文集，形状初期不整を有するRC円筒シェルの最大耐力について一その2。形状初期不整を有する場合について，(1990)，1211-1212。
6) Mashita, K.: Ultimate Strength Analysis of Reinforced Concrete Circular Cylindrical Shells Stiffened with Edge Beams, Proceedings of Shell and Spatial Structures, Taegu, Korea, pp. 223-235
16) Popov, E. P. and Medwadowski, S. J.: Concrete Shell Buckling, American Concrete Institute, SP-67, Michigan, USA (1981).