論 文

ミズナラとカシワの交雑和合性および種間雑種における繁殖能力と開花時期

生 方 正 郷*1・板 鼻 直 栄*1・河 野 耕 蔵1

ミズナラとカシワの交雑和合性および種間雑種における繁殖能力と開花時期 日林誌 81：286～290，1999

ミズナラとカシワの交雑和合性を明らかにするために，カシワ×ミズナラの人工交配を行った。また，すでに作られている約10年生のミズナラ×カシワの人工雑種個体について，繁殖能力，開花時期および両親種との交雑和合性を調査した。カシワ×ミズナラの人工交配で，堅果を得られた。ミズナラ×カシワの種間雑種個体は，樹齢10年生程度でも，花粉や堅果を生産する能力があり，花粉，堅果の発芽率は，ミズナラの種内交配個体と差がなく，当生高度木の成長は，ミズナラの種内交配個体よりも良かった。また，この種間雑種は，両親種との交配験によって堅果が得られた。ミズナラとカシワの種間雑種は両親種と開花期が大きく重なることから，自然条件で比較的容易に両親種と交雑できることが示唆された。

キーワード：コナラ属，種間雑種，人工交配，繁殖能力

Ubukata, M., Ithana, N., and Kohono, K.: Cross-compatibility between Quercus mongolica var. grosseserrata and Quercus dentata and both the reproductive ability and flowering time of their interspecific hybrids. J. Jpn. For. Soc. 81: 286～290, 1999

In order to understand more fully the cross-compatibility among Quercus species, artificial pollination of Q. dentata (female) × Q. mongolica var. grosseserrata (male) was carried out. Also, reproductive ability, blooming time, and cross-compatibility between the parental species were examined with ten-year old (approx.) hybrid trees of Q. mongolica var. grosseserrata × Q. dentata. Mature acorns were obtained in the artificial pollination of Q. dentata × Q. mongolica var. grosseserrata. It was found that ten-year old (approx.) hybrid trees of Q. mongolica var. grosseserrata × Q. dentata had the ability to produce normal pollen grains and acorns, and that the germination rate of pollen grains and acorns did not differ when compared with those of intraspecific crossings of Q. mongolica var. grosseserrata. The current-year seedlings from the former were higher than those from the latter. It was also found that this hybrid trees produced mature acorns by backcrossing with the parental species. As the interspecific hybrids of Q. mongolica var. grosseserrata and Q. dentata overlapped in blooming time with the parental species, it is suggested that they could be easily crossed with the parental species in natural conditions.

Key words: artificial pollination, interspecific hybrid, Quercus, reproductive ability

I. はじめに

ミズナラ（Quercus mongolica var. grosseserrata）やカシワ（Quercus dentata）を含むコナラ属コナラ節では，形態的な特徴に基づく種間雑種が多くの組合せで知られており，遺伝子を交換できる種の集合体であることが示唆されている（Van Valen, 1976）。北海道においても，コナラ節の各樹種の間の特徴を持つ個体が指摘され，道内各地に分布しているとされている（宮崎，1988）。ミズナラは，家具材として商品価値が高く，価格で取り引きされているが，経済的には材質と種類との関係が指摘されている（高橋，1984；竹越，1988）。

ミズナラとカシワの種間雑種の形成・維持機構を解明するために，カシワを雌性親にミズナラを花粉親にした人工交雑を行い，すでに種間雑種が得られている組合せ（河野ら，1991）と雌雄を逆に組合せでの交雑和合性的確認を行った。また，人工交雑によって創出されたミズナラ×カシワの種間雑種（河野ら，1991）の繁殖能力および種間雑種と両親種との交雑和合性を調査した。さらに，種間雑種と両親種との自然交雑の可能性を検討するため，ミズナラ×カシワの種間雑種個体，ミズナラの種内交配個体および両親種について，雌花の開花時期と花粉の飛散時期を調査した。

II. 材料と方法

本報告で人工交配に用いた個体の現況を表1に示す。

1. カシワ×ミズナラ種間雑種の創出

1997年の5月から6月にかけて，カシワを雌性親にミズナラを花粉親にした人工交雑を行った。雌性親には，石狩市の海岸林（石狩森の管理署67林班）からランダムに選定したカシワ2個体を用いた。花粉親には，北海道育種場内の天然生のミズナラ3個体を用いた。5月中旬，雌性親個体に交配袋を掛け，6月4日および5日にあらかじめ採取，精密していただいた花粉を花粉群用に交配袋内に噴射した。2週間後に交配袋をはずし，9月下旬に成熟堅果を採取した。交配組合せ別の堅果結果率（成熟堅果数/雌花数）を求めた。なお，交配袋は，市販されている王子製
紙株式会社の硒クラフトパルプで作られた一重袋（20×40 cm）を用い、枝と袋の口の間に締を詰めビニール被覆の針金で密封した。

2. ミズナラ×カシワ種間雑種およびミズナラ種内交配個体の繁殖能力

なお、この試験地の種間雑種は、葉や枝等が両親種の中間の形態を示すこと（生方ら，1996），また枝上がミズナラの種内交配個体より遅れること（生方ら，1994）が報告されている。この試験地は、植栽家系への環境の影響を均一にするために、家系ごとに個体を単位としたブロックをランダムに配置する設計になっている。

① 1997年および1998年の9月下旬に試験地の全個体からすべての成熟果実を採集し個体ごとに果実数をカウントした。また家系ごとの果実着生個体率（果実着生個体数/家系全個体数）を求める。

② 1997年において採取した果実のうち、果実数の多かった種間雑種3個体（平均樹高4.1 m, 平均胸高直径6.1 cm）および種内交配個体3個体（平均樹高3.1 m, 平均胸高直径3.4 cm）の全果実を1998年春に苗畑に播種し、発芽率を調査した。これらの果実は、播種後に重量を測定し、同年の5月に仲が停止した時点で苗高を測定した。種間雑種個体と種内交配個体について、果実重と苗高の共分散分析により当年度の苗高の成長を比較した。

③ 1998年5月に試験地内の全個体について雄花着生の有無を調査した。果実と同様に家系ごとの雄花着生個体率（雄花着生個体数/家系全個体数）を求めた。また、種内交配個体および種間雑種のそれぞれ8個体について花粉の発芽率を調査した。発芽試験は、直径9 cmのシャーレに分注したpH 6.5, 室温1℃, 5〜5%の寒天培地（橋詰, 1975）を用いた。花粉を散布したシャーレを25℃の恒温器に入れ、2日後光学顕微鏡で花粉100個中の発芽数をカウントした。発芽試験は3回繰り返し、平均発芽率を求めた。なお、花粉管が花粉管の直径よりも長く伸びているものを発芽とした。

④ 1998年5月から6月かけて、試験地内の着花をみられた個体について花粉の飛散時期、雌花の開花時期を調査した。花粉の飛散時期は、花粉が飛散し始めたから個体内のすべての雌花塊が花粉を放出し終わるまでとした。雌花の開花期間は、個体内の最も早い雌花の柱頭が確認されてから、最も遅い雌花の柱頭が乾燥し先端が黒変するまでとした。比較のために、北海道育種場内のミズナラ2個体、カシワ1個体についても同様の調査を行った。なお、このミズナラ2個体は、種間雑種の雌親であり種内交配個体の両親個体である。

⑤ 1998年に種間雑種3個体を雌性親とし、ミズナラ1個体およびカシワ1個体を花粉親とする人工交配を行った。カシワの花粉は、前年に採取した1年間〜80℃の冷凍庫で保存したものを用いた。5月中旬に交配株を、5月28日および30日に花粉を噴射し、6月中旬に交配袋をはずした。9月下旬に成熟果実を採取し、交配組合せごとの果実結果数（成熟果実数/雌花数）を求めた。交配の方法、用いた器具等は、本報告のカシワ×ミズナラ種間雑種の創出と同様である。

III. 結果

1. カシワ×ミズナラ種間雑種の創出

交配組合せ別の果実結果数を図-1に示す。最高はD11×P3の12.2%で、0%の組合せが2つあった。6組合せのうち4組合せで成熟果実を得ることができた。

2. ミズナラ×カシワ種間雑種およびミズナラ種内交配個体の繁殖能力

間種の2家系は、堅果着生個体率が1997年では、23.3%と30%で他家系に比べ高く、1998年でも1家系が13.3%と高かった。1998年の雄花着生個体率は、種間種の1家系は0%だったが、他の1家系は30%と全家系間で最も高かった。

個体別の堅果発芽率を図-5に示す。種間交雛個体の堅果発芽率は、最高82.9%，最低38.5%，種内交雛個体のそれは、最高83.9%，最低43.2%であった。種間種個体と種内交雛個体の堅果の発芽率の間には、t検定の結果有意差が検出されなかった。図-6に種間種個体および種内交雛個体の堅果重と当年生苗の苗高の関係を示す。堅果重の平均値は、種間種が1.99g、種内交雛個体が2.26gであった。また、苗高の平均値は、前者が10.6cm、後者が8.0cmであった。ミズナラでは堅果重と当年生苗の苗高間に正の相関があることが知られている（桜井・齊藤、1984：小山，1995）。苗高に対する堅果重の影響を除くために、堅果重と苗高について共分散分析を行った（表-2）。

堅果重の影響を除いた種間種個体と種内交雛個体での当年度苗の苗高について著しい有意差が検出された（F値 = 31.35；$p < 0.001$）。しかし、両者の回帰直線の傾きには有意差が検出されなかった（F値 = 1.07；$p > 0.05$）。

種間種個体および種内交雛個体の花粉発芽率の平均値と標準偏差を図-7に示す。平均値は種間種個体が75.3%，種内交雛個体が73.9%であった。t検定の結果両者の平均値間に有意差は検出されなかった。

図-2. 1997年および1998年の個体別成熟堅果数

図-3. 交配家系別の堅果着生個体の割合（1997年，1998年）

図-4. 交配家系別の雄花着生個体の割合（1998年）

図-5. 個体別堅果の発芽率

表-2. 堅果重と当年生苗の苗高の共分散分析表

<table>
<thead>
<tr>
<th>因子</th>
<th>自由度</th>
<th>堅果重平均和</th>
<th>積和</th>
<th>苗高平均和</th>
<th>残差自由度</th>
<th>残差平方和</th>
<th>差</th>
<th>平均平方</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>種間種</td>
<td>119</td>
<td>71.51</td>
<td>229.65</td>
<td>2243.90</td>
<td>118</td>
<td>1506.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>種内交雛</td>
<td>79</td>
<td>36.46</td>
<td>85.96</td>
<td>1936.72</td>
<td>78</td>
<td>1734.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>雄花着生個体</td>
<td>168</td>
<td>3240.51</td>
<td></td>
<td></td>
<td>16.53</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>回帰係数の差</td>
<td>1</td>
<td>17.62</td>
<td></td>
<td></td>
<td>17.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>回帰係数一定のときの差</td>
<td>197</td>
<td>3258.13</td>
<td></td>
<td></td>
<td>16.54</td>
<td>31.35***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>系統</td>
<td>1</td>
<td>3.58</td>
<td>-33.31</td>
<td>310.29</td>
<td>1</td>
<td>518.50</td>
<td>518.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>全体</td>
<td>199</td>
<td>111.55</td>
<td>282.30</td>
<td>4491.01</td>
<td>198</td>
<td>3776.63</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***0.5%水準で有意。n.s.有意差なし。
表3．雌花開花個体数および花粉飛散個体数の推移（1998年）

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ミズナラ 雌花</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ミズナラ 花粉</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>種内交配 雌花</td>
<td>4</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>種内交配 花粉</td>
<td>8</td>
<td>14</td>
<td>11</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

表中の数字は、各調査日で雌花開花または花粉飛散が確認された個体数を示す。

図6．種間雑種（ミズナラ×カシワ）およびミズナラ種内交配個体から採取した自然受粉堅果の重さと平均花粉数の関係
図中の直線は、種間雑種から採取した堅果の重さに対する平均花粉数の回帰直線を示し、点線は、種内交配個体から採取した堅果の重さに対する平均花粉数の回帰直線を示す。

図7．種間雑種（ミズナラ×カシワ）およびミズナラ種内交配個体の花粉発芽率
エラーバーは、標準偏差を示す。

今回調査したミズナラおよび種間雑種の個体内における開花の進み方は、雌花がまず開花し数日遅れて花粉の飛散が始めた。花粉の飛散期間は約2〜4日で、雌花の開花期間は、約2週間であった。多くのカシワ属の種について繁殖システムが重要であるが、ミズナラ種内交配個体においては、開花期間は約2〜4日であり、花粉の飛散は花序単位で2〜4日、花柱の受容期は、花序単位で6〜14日であった。

図8．種間雑種（ミズナラ×カシワ）を花粉親とした人工交配の結果
図中の数字は、結果数（成熟堅果数/雌花数×100）を示す。雌花親個体のF181、F183、F229は種間雑種（ミズナラ×カシワ）を、花粉親個体のP2はミズナラを、D11はカシワを示す。

図9．種間雑種を雌性親とした人工交配の結果
図中の数字は、結果数（成熟堅果数/雌花数×100）を示す。雌花親個体のF181、F183、F229は種間雑種（ミズナラ×カシワ）を、花粉親個体のP2はミズナラを、D11はカシワを示す。

IV．考察
河野ら（1991）は、ミズナラを雌性親、カシワを花粉親とした人工交配により種間雑種が得られたことを報告しているが、今回雌性親と花粉親を逆の種にした人工交配でも堅果が得られた。このことから、両種間では逆向きの交配でも果実形成性があることが明らかになった。ミズナラ×カシワの人工交配でも指摘されているように（河野ら、1991），堅果の結果率は、交配に用いる個体によって
大きく異なることが示唆された。集団間や産地間の交雑和合性の違いも今後明らかにする必要がある。
人工交配で創出したミズナラ×カシワの種間雑種の繁殖能力を調査した結果、樹齢10年生程度の若齢個体において、個体間差はあるものの、十分に花粉が果実の生産能力があることが明らかになった。
ヨーロッパのコナラ属では種間の中間的な形態を持つ個体の花粉発芽数が低いという報告（Rushton, 1993）があるが、ミズナラ×カシワの種間雑種個体では、ミズナラ種内交配個体と同等の高い花粉発芽数を示した。雄花着生個体数も高かったことから、花粉親としても交配に関与する可能性が推察された。
ミズナラ×カシワの種間雑種とミズナラ種内交配個体の自然受粉果実を播種し発芽数を比較したところ、両者間に有意差が認められなかった。ただし、当年生果の着生状況について、種間雑種未熟の果しが良い成長を示した。これらのことから種間雑種は自然受粉で種内交配個体と同様に稔性や成長性において過剰のない次世代を残す能力を持つことが示唆された。
本調査では、ミズナラ×カシワ種間雑種は、雌花の開花期および花粉の飛散期において、両親種であるカシワとミズナラのほぼ中間に位置することが認められた。また、この種間雑種はミズナラおよびカシワとの人工交配によって堅果を生産することが確認された。ミズナラとカシワの開花期に比べてこの種間雑種は、両親種と開花期が大きく重なることから、容易に両親種と交雑すると考えられる。
種間雑種が繁殖能力を持つということは、2種の間にさまざまなレベルの雑種が形成され、片方の種の持つ遺伝子がもう一方の種へ移植される可能性を示す（遺伝子移入：intrgression）。北海道において、ミズナラとカシワの形質をさまざまな程度で併せ持つ個体の存在が知られており、浸透性交雑ではないかと考えられている（大場, 1989）。今回の結果は、このことを裏付ける有力な証拠となる。また、Quercus petraea, Quercus robur, Quercus pubescence といったヨーロッパのコナラ属で同一地域に分布する複数の種が同一の葉緑体 DNA のタイプを共有しているという報告（Petit et al., 1993; Ferris et al., 1998）がある。被子植物では、一般に葉緑体やミトコンドリアといった核以外の細胞小器官は、雌性親のみならず次世代へ遺伝する（母性遺伝）とされているが、コナラ属の樹種は、繁殖能力を持つ種間雑種を媒介し、戦尾交雑を繰り返すことによって葉緑体やミトコンドリアを種間で交換していることが推察される。